期刊文献+

基于实测小孔的激光深熔焊接三维传热模型 被引量:3

3D heat transfer model in laser deep penetration welding based on real keyhole
下载PDF
导出
摘要 激光深熔焊接的传热过程包括热传导和焊接熔池内熔融材料的对流流动。考虑了熔池的对流和材料热物性参数的温度依存性,建立了激光深熔焊接的三维传热模型,以试验所得小孔为原型;考虑了熔池中流质的轴向流动及轴向的温度变化;采用了"固液同一法",让温度低于液相线的材料粘性系数趋于无限大,而高于液相线的材料则采用实际值。采用有限单元法对模型数值求解的结果表明,激光焊接温度中的等温线为一组类似椭圆的曲线;小孔前沿的温度梯度、速度梯度大;后沿的温度梯度、速度梯度小;焊接熔池中的对流流动是在表面张力驱动下产生的。 The heat transfer in laser deep penetration welding includes heat conduction and convection in the welding pool.A 3D heat transfer model in laser deep penetration welding was developed.The main characteristics of the model has some characteristics as follows:(1)A prototype of the keyhole in the model was obtained from the experiments.(2)The convection and the temperature distribution in the depth were considered.(3)The same law in the solid and the liquid region,i.e.the viscosity of the material in the solid region was infinite;however the viscosity of the material in the liquid region was set to actual value.The model was solved by a finite element method,and the results show that:The isotherms in laser welding are shaped as ellipses.The temperature gradient and the velocity gradient on the front keyhole wall are greater than those on the rear keyhole wall.The convection flow in the welding pool is driven by the surface tension.
出处 《焊接学报》 EI CAS CSCD 北大核心 2008年第2期27-30,共4页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(50575070) 湖南大学博士启动基金(521105261) 博士点基金新教师项目(20070532003)
关键词 激光焊接 传热 数学模型 laser welding heat transfer mathematical model
  • 相关文献

参考文献11

  • 1Jin Xiangzhong, Li Lijun, Zhang Yi. A heat transfer model for deep penetration laser welding based on an actual keyhole[J], International Journal of Heat and Mass Transfer. 2003, 46:15-22. 被引量:1
  • 2王智勇,初新俊,陈虹,左铁钏.激光深熔焊接抛物面小孔模型[J].焊接学报,2006,27(2):1-5. 被引量:4
  • 3刘黎明,迟鸣声,宋刚,王继锋.镁合金激光-TIG复合热源焊接热源模型的建立及其数值模拟[J].机械工程学报,2006,42(2):82-86. 被引量:22
  • 4Postacioglu N, Kapadia P, Dowden J. A theoretical model of thermocapillary flows in laser welding[J]. Journal of Physics. D: Applied Physics, 1991, 24: 15-20. 被引量:1
  • 5Lambrakos S G, Metzbower E A, Moore P G, et al. A numerical model for deep penetration laser welding[ C]// Proceeding of ICAIEO, 1991: 40-52. 被引量:1
  • 6Kar A, Mazumder J. Mathematical modelling of key-hole laser welding [J]. Journal of Applied Physics, 1995, 78( 11 ) : 6353-6360. 被引量:1
  • 7Akira Matsunawa, Vlad Semak. The simulation of front keyhole wall dynamics during laser welding [ J ]. Journal of Physics D: Applied Physics, 1997, 30: 798-809. 被引量:1
  • 8张屹,李力钧,金湘中,洪蕾.激光深熔焊接小孔效应的传热性研究[J].中国激光,2004,31(12):1538-1542. 被引量:12
  • 9Metzbower E A. Keyhole formation [ J]. Metallurgical Transactions B, 1993, 24B: 875-880. 被引量:1
  • 10Naoki Seto, Seiji Katayamat, Masami Mizutanit, et al. Relationship between plasma and keyhole behavior during CO2 laser welding[C]// In: Proceeding of SPIE: High-Power Lasers Manufacturing. 2000, 3888:61-68. 被引量:1

二级参考文献35

  • 1宋刚,刘黎明,王继锋,周继扬.激光-TIG复合焊接镁合金AZ31B焊接工艺[J].焊接学报,2004,25(3):31-34. 被引量:38
  • 2刘建华,李志远,胡伦骥,贺礼,张立文.激光深熔焊传热模型的研究[J].激光技术,1995,19(1):10-14. 被引量:9
  • 3John Dowden. The flow of heat and the motion of the weld pool in penetration welding with laser[ J]. Applied Physics, 1985, 57(9) : 474 -479. 被引量:1
  • 4Kroos J, Gratzke U, Simon G. Towards a self-consistent model of the keyhole in penetration laser beam welding[J]. Applied Physics, 1993, 26:474-480. 被引量:1
  • 5Robert Ducharme, Karen Williams, Phiroze Kapadia, et al. The laser welding of thin metal sheets : an integrated keyhole and weld pool model with supporting experiments [ J ]. Applied Physics,1994, 27 : 1619 - 1627. 被引量:1
  • 6Trappe J, Kroos J, Tix C, et al. On the shape and location of the keyhole in penetration laser welding [ J ]. Applied Physics,1994, 27 : 2152 -2154. 被引量:1
  • 7Klein T, Vicanek M, Kroos J, et al, Oscillations of the keyhole in penetration laser beam welding [ J ]. Applied Physics, 1994,27 : 2023 - 2030. 被引量:1
  • 8Nami Postacioglu, Phiroze Kapadia, Michael Davis, et al. Upwelling in the liquid region surrounding the keyhole in penetration welding with laser[ J]. Applied Physics, 1987, 20:340 -345. 被引量:1
  • 9Nami Postaeioglu , Phiroze Kapadia , John Dowden . Capillary waves on the weld pool in penetration welding with laser[ J ]. Applied Physics, 1989, 22 : 1050 - 1061. 被引量:1
  • 10Nami Postacioglu, Phiroze Kapadia. Theory of the oscillations of an ellipsoidal weld pool in laser welding[ J]. Applied Physics,1991,24:1288 - 1292. 被引量:1

共引文献35

同被引文献31

  • 1杜汉斌,胡伦骥,王东川,孙成智.激光穿透焊温度场及流动场的数值模拟[J].焊接学报,2005,26(12):65-68. 被引量:18
  • 2王智勇,初新俊,陈虹,左铁钏.激光深熔焊接抛物面小孔模型[J].焊接学报,2006,27(2):1-5. 被引量:4
  • 3张林杰,张建勋,王蕊,巩水利.侧吹气体对不锈钢薄板激光焊接焊缝成形的影响[J].稀有金属材料与工程,2006,35(A02):39-44. 被引量:6
  • 4John G, Aditya C, Malcolm B. New finite elment model for welding heat sources[J].Metallurgical Transations II (Process Metallurgy), 1984, 15B(2): 299-305. 被引量:1
  • 5Chang W S, Na S J. A study on the prediction of the laser weshape with varying heat source equations and the thermal distotion of a small structure in micro-joining[ J]. Journal of Materals Processing Technology, 2002, 120( 1 - 3 ) : 208 - 214. 被引量:1
  • 6Eager T W, Tsai N S. Temperature fiehts produced by traveling distributed heat sources [ J ]. Welding Journal, 1983, 62 (12) : 346- 355. 被引量:1
  • 7Radaj D. Welding Residual Stresses and Distortion : Calculation andMeasurement[M]. Diisseldorf:DVS-Verlag, 2003. 被引量:1
  • 8BachmannM, AvilovV, Gumenyuk A, et al. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts [J]. International Journal of Heat and Mass Transfer, 2013, 60: 309-321. 被引量:1
  • 9Lu S P, Fujii H, Nogi K. Marangoni convection and weld shape variations in Ar-O2 and Ar-CO2 shielded GTA welding [J]. Materials Science and Engineering A, 2004, 380 : 290-297. 被引量:1
  • 10Tsai M C, Kou SinDo. Marangoni convection in weldpools with a free surface [J]. International Journal for Numerical Methods in Fluids, 1989, (9): 1503-1516. 被引量:1

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部