期刊文献+

自组织神经影射网络排序及其在植物群落分析中的应用 被引量:7

Ordination of self-organizing feature map neural network and its application in the study of plant communities
下载PDF
导出
摘要 自组织神经影射网络(SOFM)对复杂问题和非线性问题具有较强的分析和解决功能,其特征完全适合植物群落的排序研究。该文介绍了SOFM的基本原理和排序分析过程及方法,并应用SOFM网络排序对太行山中段植物群落进行了排序分析。其计算过程在Matlab 6.5神经网络工具箱中实现。结果将68个样方排列在SOFM拓扑空间,排序轴反映了明确的生态梯度,能够反映植物群落间的生态关系,生态意义明确,符合植被实际,表明SOFM网络是有效的植物群落排序方法。在SOFM排序过程中也很容易进行聚类,有利于群落分类和排序的结合。 The self-organizing feature map (SOFM) neural network is powerful in analyzing and solving complicated and non-linear matters. According to its features, SOFM is completely applicable to ordination study of plant communities. In the present work, the mathematical principles, ordination technique and procedure were introduced, and SOFM ordination was applied to the study of plant communities in the midst of Taihang Mountains,northern China. The ordination was carried out using NNTool box in the Matlab 6.5. As the results, 68 quadrats of plant communities were distributed in SOFM space. The ordination axes showed ecological gradients clearly and revealed the relationship among communities with ecological meanings. This result is consistent to the reality of vegetation in the study area and it suggests that SOFM ordination is an effective ordination technique in plant ecology. During the ordination procedure, it is easy to carry out clustering of communities, and so it is beneficial for combination of classification and ordination in vegetation study.
出处 《北京林业大学学报》 CAS CSCD 北大核心 2008年第1期1-5,共5页 Journal of Beijing Forestry University
基金 国家自然科学基金(30070140) 教育部骨干教师基金项目。
关键词 自组织神经影射网络 植被 数量方法 梯度分析 排序 太行山 self-organizing feature map (SOFM) neural network vegetation quantitative methodology gradient analysis ordination Taihang Mountains
  • 相关文献

参考文献22

  • 1张金屯著..数量生态学[M].北京:科学出版社,2004:357.
  • 2阳含熙,卢泽愚著..植物生态学的数量分类方法[M].北京:科学出版社,1981:420.
  • 3余世孝编著..数学生态学导论[M].北京:科学技术文献出版社,1995:296.
  • 4TERBRAAK C J, FAND S P. Canoco reference manual and user' s guide to Canoco for Windows : Software for canonical community ordination ( Version 4. 5 ) [ G ]. Wageningen : Centre for Biometry Wageningen and Microcomputer Power,2002. 被引量:1
  • 5张峰,张金屯.我国植被数量分类和排序研究进展[J].山西大学学报(自然科学版),2000,23(3):278-282. 被引量:97
  • 6袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,2000.. 被引量:23
  • 7李双成,郑度.人工神经网络模型在地学研究中的应用进展[J].地球科学进展,2003,18(1):68-76. 被引量:108
  • 8GIRAUDEL J L, AURELLE D, LEK S. Application of the selforganizing mapping and fuzzy clustering microsatcllite data: How to detect genetic structure in brown trout ( Salmo trutta ) populations [M]// LEK S, GUEGUAN J F. Artificial neuronal networks: Application to ecology and evolution, environmental science. Berlin: Springer- Verlag, 2000. 被引量:1
  • 9TRAN L T,KNIGHT C G,O'NEILL R V. Self-organizing maps for integrated environmental assessment of the mid-Atlantic region [ J ]. Environmental Management, 2003,31 (6) : 822-835. 被引量:1
  • 10吴聘奇,黄民生.SOM网络在福建省城市职能分类中的应用[J].经济地理,2005,25(1):68-70. 被引量:26

二级参考文献114

共引文献303

同被引文献119

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部