期刊文献+

基于进化神经网络的刀具寿命预测 被引量:25

Prediction of cutting tool life based on evolutionary neural network
下载PDF
导出
摘要 为预测道具寿命,引入人工神经网络技术,建立了刀具寿命预测神经网络模型,同时对切削参数进行优化选择。在刀具寿命预测中,针对反向传播算法存在收敛速度慢、容易陷入局部极小值及全局搜索能力弱等缺陷,采用遗传算法训练反向传播神经网络,设计了进化神经网络的学习算法。实验和仿真结果表明:基于进化计算的反向传播神经网络可以克服单纯使用反向传播网络易陷入局部极小值等难题,刀具寿命的预测精度较高,从而为刀具需求计划制定、刀具成本核算,以及切削参数制定提供理论依据,节约了制造执行系统中的生产成本。 Artificial neural network was introduced to predict cutting tool life, and neural network-based prediction model of cutting tool life as well as the optimizing selection of machining parameters were proposed. In the prediction process, there were some disadvantages in Back Propagation (BP) algorithm, such as low convergence speed, easily falling into local minimum point and weak global search capability. To settle these problems, a genetic algo- rithm was used to train BP neural network to replace classical learning algorithms. An evolutionary neural network learning algorithm was developed. Results of simulations and experiments showed that the evolutionary neural network based on genetic algorithm could effectively overcome the shortcoming of falling into local minimum point. This method could obtain higher prediction accuracy. As a result, it provided theoretical basis for the establishment of cutting tool requirements planning, the account of its cost and the selection of machining parameters, as well as reduced the cost in Manufacturing Execution System (MES).
出处 《计算机集成制造系统》 EI CSCD 北大核心 2008年第1期167-171,182,共6页 Computer Integrated Manufacturing Systems
基金 重庆市自然科学基金资助项目(8483) 重庆市信息产业局发展资金资助项目(200501016)~~
关键词 进化神经网络 遗传算法 刀具寿命 切削参数优化 evolutionary neural network genetic algorithm cutting tool life machining parameters optimization
  • 相关文献

参考文献11

  • 1陆汝钤.世纪之交的知识工程与知识科学[M].北京:清华大学出版社,2001.. 被引量:54
  • 2LOONEY C G. Pattern recognition using neural networks [M]. New York,N. Y. ,USA: Oxford University Press,1997. 被引量:1
  • 3HAYKIN S. Neural networks a comprehensive foundation [M]. 2nd ed. New York,N. Y. ,USA:Printice-Hall,1994. 被引量:1
  • 4BALAKRISHNAN K,HONAVAR V. Improving convergence of back propagation by handling flat-spots in the output layer[C]//Proceedings of the 3rd International Conference on Artificial Neural Networks. Brighton, UK:Neural Networks, 1992:139-144. 被引量:1
  • 5PAREKH R, BALAKRISHNAN K, HONAVOR V. An empirical comparison of flat-spot elimination techniques in backpropagation networks[C]//Proceedings of the 3rd Workshop on Neural Networks-WNN' 92. San Diego,Cal. , USA: Society for Computer Simulation, 1992 : 55-60. 被引量:1
  • 6GOLDBERG D E. Genetic algorithm in search, optimization and machine learning [M]. New York, N. Y. , USA.. Addison- Wesley Publishing Company, Inc. , 1989. 被引量:1
  • 7陈明.基于进化遗传算法的优化计算[J].软件学报,1998,9(11):876-879. 被引量:30
  • 8陈田良,王煦法,庄镇泉,等.遗传算法及其应用[M].北京:人民邮电出版社,1996:65-78. 被引量:1
  • 9陈宏钧主编,马素敏副主编..金属切削速查速算手册 第2版[M].北京:机械工业出版社,2003:1381.
  • 10BEN FREDJN, AMAMOU R, REZGUI M A. Surface roughness prediction based upon experimental design and neural network models [C]//IEEE International Conference on Systems, Man and Cybernetics. Washington, D. C., USA:IEEE, 2002: 752- 756. 被引量:1

共引文献82

同被引文献237

引证文献25

二级引证文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部