期刊文献+

基于QPSO训练支持向量机的网络入侵检测 被引量:10

Network intrusion detection method based on novel support vector machine
下载PDF
导出
摘要 对于大规模入侵检测问题,分解算法是训练支持向量机的主要方法之一。在结构风险最小化的情况下,利用改进后的蚁群算法(QPSO)解决二次规划问题(QP),寻找最优解,并对ArraySVM算法进行了改进,同时对KDD入侵检测数据进行了检测。结果表明,算法精确度高于改进前的ArraySVM算法,并且减少了支持向量点数量。 One ofthe approaches to train support vector machine (SVM) for large.scale intrusion detection problem is the decomposition method. A new method based on the quantum-behaved particle swarm optimization (QPSO) is developed to solve quadratic programming (Qp) problem, and to find the optimal solution. ArraySVM algorithm is also improved to train KDD intrusion detection data sets. Based on the experimental results comparison and analysis, the present method is shown to more complete than previous ArraySVM algorithm in describing the modified algorithm precision, and also to reduce the number of support vector points.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第1期34-36,共3页 Computer Engineering and Design
基金 国防应用基础研究基金项目(A1420061266) 教育部重点科学研究基金项目(105087)
关键词 入侵检测 支持向量机 量子粒子群算法 二次规划 网络完全 intrusion detection support vector machine QPSO quadratic programming network security
  • 相关文献

参考文献12

  • 1[1]Juan M E T,Pedro G T,Jesus E D V,et al.Anomaly detetion me-thods in wired networks:A survey and taxonomy[J].Computer Communications,2004,27(16):1569-1584. 被引量:1
  • 2[2]Theuns V,Ray H.Intrusion detection techniques and approaches[J].Computer Communications,2002,25 (15):1356-1584. 被引量:1
  • 3[3]Kang G S,Wang H,Zhang D.Change-point monitoring for the detection of Dos attacks[J].IEEE Transactions on Dependable and Secure Computing,2004,1(4):193-208. 被引量:1
  • 4[4]Liu R T.A fast pattern-match engine for network processor-based network intrusion detection system[C].Las Vegas,Nevada,USA:Proceeding of the International Conference on Information Technology:Coding and Computering,2004:97-101. 被引量:1
  • 5[5]Rena H P.Markov chains in network intrusion detection[C].Florianopolis,Brazil:Proceeding of the IEEE Workshop on In-formation Assurance United States Military Academy,West Point,2004:10-11. 被引量:1
  • 6[6]Sung A H,Mukkamala S.Identifying important features for intru-sion detection using support vector machines and neural net-works[C].Proceeding of the Symposium on Applications and the Interact.Dublin:Trinity College Dublin Press,2003:209-216. 被引量:1
  • 7李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79
  • 8张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 9[9]边兆祺,张学工.模式识别[M].2 版.北京:清华大学出版社,1999. 被引量:1
  • 10[10]John M,Atsushi I.Support vector classifiers and network Intru-sion Detection[C].Budapest,Hungary:Proceedings of IEEE In-ternational Conference on Fuzzy System,2004:7803-8353. 被引量:1

二级参考文献2

共引文献161

同被引文献82

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部