摘要
将通量加权的思想引入到紧致格式中,构造了一个传统方法与紧致格式混合组成的加权型差分格式.利用该格式与二阶TVD格式分别计算了一维方波、组合波问题和一些黎曼问题,如Sod问题和Shu问题,以及一维定常激波问题.计算结果的比较表明加权格式无论在捕捉各种间断,还是在分辨各种复杂波系上,都具有较大的优势,并与精确解非常吻合.
With introduction of flux-weighted concept into the compact scheme, a new flux-weighted compact scheme was presented by combining classical scheme and compact scheme. This scheme and a 2nd-order total variation diminishing (TVD) scheme were used to calculate one-dimensional square waves, combine waves and some Riemann problems, such as Sod problem and Shu problem, as well as one-dimensional steady shock. The results show that the new scheme has advantage over the 2nd-order TVD scheme in capturing various discontinuities or resolving various complex waves. The results solved by the new scheme are also highly consistent with exact solutions.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2008年第1期64-69,共6页
Journal of Aerospace Power
基金
国家自然科学基金(1032100210672012)
关键词
航空
航天推进系统
数值方法
迎风紧致格式
通量加权型差分格式
aerospace propulsion system
numerical method
upwind compact scheme
weighted essentially non-oscillatory (WENO) schemess