摘要
将通量限制或加权的思想引入到紧致格式中,构造了两类传统方法与紧致格式混合组成的差分格式:通量限制与加权型差分格式。通过方波、组合波、定常激波、非定常Sod问题、Shu问题和Lax问题上的计算,以及与精确解的比较,结果表明这两种方法在间断的捕捉上具有高精度、高分辨率,而在计算方波、组合波或Shu问题和Lax问题上,加权格式具有更大的优势。
The flux weighted and flux limited methods are introduced in compact schemes. weighted scheme and compact flux limited scheme are developed. The exact solutions was compared Both the compact flux with the results of the numerical calculating one-dimensional square waves, combine waves and some Riemann problems, such as Sod problem, Lax problem, and Shu problem, as well as a one-dimensional steady shock. Numerical results of the both numerical algorithms showed their high-order accuracy and high resolution, and low oscillations across discontinuities. For resolutions in calculating square waves, combine waves, Lax problem, and Shu problem, the weighted schemes have the larger advantage of resolutions.
出处
《空气动力学学报》
EI
CSCD
北大核心
2007年第3期372-375,409,共5页
Acta Aerodynamica Sinica
基金
国家自然科学基金资助项目(10321002
10672012)
关键词
数值方法
捕捉激波
迎风紧致格式
numerical method
capturing shock
upwind compact scheme