期刊文献+

APPLICATION OF PARAMETRIC DERIVATION METHOD TO THE CALCULATION OF PEIERLS ENERGY AND PEIERLS STRESS IN LATTICE THEORY 被引量:4

APPLICATION OF PARAMETRIC DERIVATION METHOD TO THE CALCULATION OF PEIERLS ENERGY AND PEIERLS STRESS IN LATTICE THEORY
下载PDF
导出
摘要 Applying the parametric derivation method, Peierls energy and Peierls stress are calculated with a non-sinusoidal force law in the lattice theory, while the results obtained by the power-series expansion according to sinusoidal law can be deduced as a limiting case of non- sinusoidal law. The simplified expressions of Peierls energy and Peierls stress are obtained for the limit of wide and narrow. Peierls energy and Peierls stress decrease monotonically with the factor of modification of force law. Present results can be used expediently for prediction of the correct order of magnitude of Peierls stress for materials. Applying the parametric derivation method, Peierls energy and Peierls stress are calculated with a non-sinusoidal force law in the lattice theory, while the results obtained by the power-series expansion according to sinusoidal law can be deduced as a limiting case of non- sinusoidal law. The simplified expressions of Peierls energy and Peierls stress are obtained for the limit of wide and narrow. Peierls energy and Peierls stress decrease monotonically with the factor of modification of force law. Present results can be used expediently for prediction of the correct order of magnitude of Peierls stress for materials.
出处 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第4期363-368,共6页 固体力学学报(英文版)
基金 Project supported by the National Natural Science Foundation of China (No.10774196) the Science Foundation Project of CQ CSTC (No.2006BB4156) Chongqing University Postgraduates'Science and Innovation Fund (No.2007A1A0030240).
关键词 Peierls energy Peierls stress parametric derivation method lattice theory Peierls energy, Peierls stress, parametric derivation method, lattice theory
  • 相关文献

参考文献3

二级参考文献30

  • 1[2]Duesbery M S, Vitek V. Plastic anisotropy in Bcc transition metals. Avta Mater, 1998, 46:1481~1489 被引量:1
  • 2[3]Chang J P, Cai W, Bulatov V V, Yip S. Dislocation motion in BCC metals by molecular dynamics. Materials Science and Engineering, 2001, 160:A309~310 被引量:1
  • 3[4]Chang J P, Cai W, Bulatov V V, Yip S. Molecular dynamics simulation of motion of edge and screw dislocation in a metal. Computer Materials Science, 2002, 23:111~117 被引量:1
  • 4[5]Hirth J P, Lothe J. Theory of dislocations. Wiley, New York, 1982 被引量:1
  • 5[6]Gumbsch P, Gao H J. Dislocations faster than the speed of sound. Science, 1999, 283:965~969 被引量:1
  • 6[7]Gumbsch P, Gao H J. Driving force and nucleation of supersonic dislocations. J Comput-Aided Mater 1999, 6(2~3):137~145 被引量:1
  • 7[8]Ackland G J et al. Simple N-body Potential for the noble metals and nicke. Philosophical Magazine A, 1987, 56(6):735~747 被引量:1
  • 8[9]Wang J, Woo C H, Huang H C. Destabilization of dislocation dipole at high velocity. Applied Physics Letters, 2002, 79(22):3621~3629 被引量:1
  • 9[10]Xiangli Liu, Golubov S I, Woo C H, Hanchen Huang. Glide of edge dislocations in tungsten and molybdenum. Materials Science and Engineering, 2004, 96:A365~375 被引量:1
  • 10[11]Nadgornryi E. Dislocation dynamics and mechanical properties of crystals. Prog Mater Sci, 1998, 31:139~147 被引量:1

共引文献8

同被引文献7

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部