期刊文献+

关于图测地数的几个问题(英文) 被引量:2

SOME RESULTS ON GEODETIC NUMBER OF GRAPHS
下载PDF
导出
摘要 本文研究了图的测地数.利用极点必属于测地集的方法,刻画了g(G)=n-1的图G的结构,同时使用图的一些重要参数,获得了图上下测地数的几个新的界.对于有向图D,讨论了g(D)=2的充要条件. In this paper, we mainly sutdy the geodetic number of a graph G. Based on the lemma which the extreme vertex belong to any geodetic set of graph, we get the upper and lower geodetic numbers of the graphs G with g(G)=n-1. Secondly, some new bounds for upper and lower geodetic numbers of G are raised from some important parameters of the graph. Finally, for a digraph D, a sufficient and necessary condition for g(D)= 2 is given.
出处 《数学杂志》 CSCD 北大核心 2008年第1期8-14,共7页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(No.10301010) Science and Technology Commission of Shanghai Municipality(No.04JC14031).
关键词 有向图 测地集 测地数 digraph geodetic set geodetic number
  • 相关文献

参考文献11

  • 1Atici.M..Computational complexity ofgeodetic set[J].J.Computer Mathematics,2002,79(5):587-591. 被引量:1
  • 2Bonnesens T.,Fenchel W..Theorie der Konvexen K(o)rper[M].Berlin:Springer,1934. 被引量:1
  • 3Buckley F.,Harary F..Distance in Graphs[M].Addison-Wesley,Redwood City,CA,1990. 被引量:1
  • 4Chang G.J.,Tong Li Da,Wang Hong Tsu..Geodetic spectra of graphs[J].EuropeanJ.Combinatorics,2004,25(3):383-391. 被引量:1
  • 5Chartrand G.,Harary F.,Zhang Ping..Extremal problems in geodetic graphtheory[J].Congr.Number,1998,130(2):157-169. 被引量:1
  • 6Chartrand G.,Harary F.,Zhang Ping.The geodetic number of agraph[J].Networks,2002,39(1):1-6. 被引量:1
  • 7Chartrand G.,Zhang Ping.The forcing geodetic number of a graph[J].Discuss.Math.GraphTheory,1999,19 (1):45-48. 被引量:1
  • 8Chartrand G.,Zhang Ping.Realizable ratios in graph theory:geodesicparameters[J].Bull.Inst.Combin.Appl.,1999,27(1):69-80. 被引量:1
  • 9Chartrand G.,Zhang Ping.The geodetic number of an oriented graph[J].EuropeanJ.Combinatorics,2000,21(2):181-189. 被引量:1
  • 10Harary F.,Nieminen J..Convexity in graph[J].J.DifferentialGeometry,1981,16(2):185-190. 被引量:1

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部