期刊文献+

基于数据挖掘的信用分类技术 被引量:5

Data mining-based credit classifying technique
下载PDF
导出
摘要 以提高信用等级评价的质量为目的,介绍了数据挖掘技术的基本过程.以企业贷款的信用分类为研究背景,具体研究了业务理解、数据理解、数据准备、建模、评估和发布的实现环节.在建模过程中,采用决策树为分析模型,对经典的C4.5算法进行了改进.将改进算法运用在企业贷款的信用分类中,并将其效果与经典的C4.5算法的结果进行比较,结果表明该算法对于企业信用分类这样的复杂系统,在准确度与决策树结构上具有一定程度上的改善,能够提高信用等级评价质量. Aiming at the improvement of credit grade evaluating quality, the basic processes of data mining technique are introduced. Taking credit classifying of enterprise loans as research background, implement links such as business understanding, data comprehension, data preparation, modeling, evaluation and release were studied. During modeling, the decision tree was adopted as analyzing model, and the conventional CA.5 algorithm was improved. The new algorithm was applied in credit classifying of enterprise loans, and its effect was compared with that of conventional C4.5 algorithm. The result shows that the improved algorithm can increase precision and improve structure of decision tree in complex credit classifying, which is capable of improving the quality of credit grade evaluation.
出处 《沈阳工业大学学报》 EI CAS 2007年第6期685-691,共7页 Journal of Shenyang University of Technology
基金 国家自然科学基金资助项目(70671016)
关键词 数据挖掘 信用等级 决策树 C4.5算法 分类 data mining credit grade decision tree C4.5 algorithm classification
  • 相关文献

参考文献8

二级参考文献26

  • 1Berson.A Smith.S Thearling.K.构建面向CRM的数据挖掘应用[M].北京:人民邮电出版社,2001-08.. 被引量:1
  • 2[1]Anthony Saunders,Credit Risk Measurement:the next great financial challenge,2nd edition,amozon.com,1998,p.278. 被引量:1
  • 3[2]Altman,E.I.,ZETA Analysis:A New Model to Identify Bankruptcy Risk of Corporations,1977. 被引量:1
  • 4[3]Shumway,T.,Forecasting Bankruptcy More Accurately:A Simple Hazard Model,1998. 被引量:1
  • 5[4]Kealhofer,s.,Credit Risk and Risk Management,1990. 被引量:1
  • 6[5]Anthony Saunders,Credit Risk Measurement:New Approaches to Value at Risk and Other Paradigms,2ndedition,amozon.com,1998. 被引量:1
  • 7[6]David Wishart,k-Means Clustering with Outlier Detection,GfKl 2001,the 25th Annual Conference of the German Classification Society,University of Munich,March 14~16,2001. 被引量:1
  • 8[7]Sudipto Guha,CURE:A clustering algorithm for large databases,Proceedings of the 1998 ACM SIGMOD international conference on Management of data,1999. 被引量:1
  • 9[8]Liadan OCallaghan,Streaming-Data Algorithms For High-Quality Clustering ,Proceedings of IEEE International Conference on Data Algorithms For High-Quality Clustering,Proceedings of IEEE International Conference on Data Engineering,March 2002. 被引量:1
  • 10[9]Haixun Wang,Clustering by pattern similarity in large data sets,Proceedings of the 2002 ACM SIGMOD international conference on Management of data,2002. 被引量:1

共引文献88

同被引文献29

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部