期刊文献+

应变硅pMOS晶体管沟道应变的有限元研究 被引量:2

Investigation into Channel Strain in Strained-Si pMOS Transistor by Finite Element Method
下载PDF
导出
摘要 通过有限元方法,研究了一种采用SiGe源漏结构的pMOS晶体管中硅沟道的应变及其分布情况,模拟计算结果与利用会聚束电子衍射方法测量得到的数据能够较好地吻合,验证了模拟模型及方法的正确性。结果表明:提高源漏SiGe中的Ge组分、减小源漏间距、增加源漏的刻蚀深度和抬高高度,能有效增加沟道的应变量,为通过控制应变改善载流子迁移率提供了设计依据。 Strain distribution in Si channel region of pMOS transistors with SiGe source and drain structures has been studied using finite element method. Simulation results are in good agreement with the data measured by convergent beam electron diffraction, verifying the correctness of the simulation model and the method. Results indicate that higher channel strain can be achieved by increasing the molar fraction of germanium, reducing the source-drain distance, increasing the recess depth and the elevation height of source and drain, which provides useful reference for improving the carriers' mobility by introducing and controlling the channel strain in new device designs.
出处 《微电子学》 CAS CSCD 北大核心 2007年第6期815-818,共4页 Microelectronics
基金 国防科技重点实验室基金资助项目(51433020105DZ6802)
关键词 有限元 应变硅 应变 锗硅 PMOS Finite element Strained silicon Straim SiGe pMOS
  • 相关文献

参考文献14

  • 1李竞春,杨沛峰,杨谟华,何林,李开成,谭开州,张静.Si_(1-x)Ge_x/Si应变材料的生长及热稳定性研究[J].微电子学,2002,32(2):120-123. 被引量:3
  • 2张雪锋,徐静平,邹晓,张兰君.应变Si_(1-x)Ge_xpMOSFET反型沟道空穴低场迁移率模型[J].Journal of Semiconductors,2006,27(11):2000-2004. 被引量:3
  • 3RIM K, ANDERSON R, BOYD D. Strained SiCMOS (SS CMOS) technology: Opportunities and Challenges [J]. Solid-State Electronics, 2003, 47 ( 7 ) : 1133-1139. 被引量:1
  • 4GHANI T, ARMSTRONG M, AUTH C. A 90 run high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors [C]//IEDM Tech Dig. Washington D C, USA. 2003: 978-980. 被引量:1
  • 5THOMPSON S E, ARMSTRONG M, AUTH C. A 90-nm logic technology featuring strained-silicon [J]. IEEE Trans Elec Dev, 2004, 51(11) : 1790-1797. 被引量:1
  • 6LI J H, DOMENICUCCI A, CHIDAMBARRAO D. Stress and strain measurement in semiconductor device channel areas by convergent beam electron diffraction [C]//Mater Res Soc Syrup Proc. San Francisco, CA, USA. 2006: 0913-D05-03. 被引量:1
  • 7ANG K W, CHUI K J, BLIZNETSOV V. Lattice strain analysis of transistor structures with silicon-germanium and silicon-carbon source/drain stressors [J]. Appl Phys Lett, 2005, 86(9): 093102. 被引量:1
  • 8HUANG J, CHIDAMBARAM P R, IRWIN R B. Probing nanoscale local strains in advanced Si CMOS devices by CBED: a tutorial with recent results [J]. ECS Trans, 2006, 2(2): 541-547. 被引量:1
  • 9ZHANG P, ISTRATOV A A, HE H F. Analysis of nano-scale stress in strained silicon materials and microelectronics devices by energy-filtered convergent beam electron diffraction [J]. ECS Trans, 2006, 2 (2) : 559-568. 被引量:1
  • 10CHRISIANSEN S, ALBRECHT M, STRUNK H P. Strained state of Ge(Si) islands on Si finite element calculations and comparison to convergent beam electron-diffraction measurements [J]. Appl Phys 1994, 64(26): 3167-3619. Lett,1994, 64(26): 3167-3619. 被引量:1

二级参考文献17

  • 1许顺生 冯瑞.X射线衍射貌相学[M].北京:科技出版社,1987.275-276. 被引量:6
  • 2邹吕凡,王占国,孙殿照,张靖巍,李建平,孔梅影,林兰英.应变Si_(1-x)Ge_x/Si异质结材料的GSMBE生长及X射线双晶衍射研究[J].Journal of Semiconductors,1997,18(5):333-336. 被引量:3
  • 3Hinckley J M,Singh J.Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si(001) substrate.Phys Rev B,1990,41(5):2912 被引量:1
  • 4Briggs P J,Walker A B,Herbert D C.Calculation of hole mobilities in relaxed and strained SiGe by Monte Carlo simulation.Semicond Sci Technol,1998,13(7):680 被引量:1
  • 5Mishima T,Fredriksz C W,Walle G,et al.Effect of interface quality on the electrical properties of p-Si/SiGe two-dimensional hole gas systems.Appl Phys Lett,1990,57 (24):2567 被引量:1
  • 6Emeleus C J,Whall T E,Smith D W,et al.Hole transport in Si0.8 Ge0.2 quantum wells at low temperatures.Thin Solid Films,1992,222(1/2):24 被引量:1
  • 7Yang L F,Watling J R,Wilkins R C W,et al.Si/SiGe heterostructure parameters for device simulations.Semicond Sci Technol,2004,19(10):1174 被引量:1
  • 8Laikhtman B,Kiehl R A.Theoretical hole mobility in a narrow Si/SiGe quantum well.Phys Rev B,1993,47 (16):10515 被引量:1
  • 9Chun S K,Wang K L.Effective mass and mobility of holes in strained Si1-xGex layers on (001) Si1-yGey substrate.IEEE Trans Electron Devices,1992,39 (9):2153 被引量:1
  • 10Powell S K,Goldsman N,McGarrity J M,et al.Physicsbased modeling and characterization of 6H-silicon-carbide metal-oxide-semiconductor field-effect transistors.J Appl Phys,2002,92:4053 被引量:1

共引文献4

同被引文献23

  • 1蒋钊,陈学康.薄膜的应力控制技术研究现状[J].真空科学与技术学报,2008,28(S1):17-21. 被引量:15
  • 2刘俊,陈希明,周平.在工科大学物理教学中引入纳米科技[J].重庆邮电大学学报(社会科学版),2004,17(z1):49-50. 被引量:1
  • 3罗亮,左榘,孟凡玲.κ-卡拉胶凝胶的力学行为研究[J].高分子材料科学与工程,2005,21(4):212-215. 被引量:7
  • 4YANG L F, WATLING J R, WILKING R C W, et al. Si/SiGe heterostructure parameters for device sim- ulations[J]. Semicond Sci Teehnol, 2004, 19 (10)1174-1182. 被引量:1
  • 5XU Q X, DUAN X F, QIAN H, et al. Hole mobility enhancement of pMOSFETs with strain channel in- duced by Ge pre-amorphization implantation for source/drain extension [J]. IEEE Elec Dev Lett, 2006, 27(3): 179-181. 被引量:1
  • 6CONZATTI F, MICHIELIS F D, ESSENI D, et al. Drain current improvements in uniaxially strained p- MOSFETs :a multi-subband Monte Carlo study [J]. Sol Sta Elec, 2009, 53(7) :706-711. 被引量:1
  • 7BUFLER F M, TSIBIZOV A, ERLEBACH A. Scal- ing of bulk pMOSFETs: (110) surface orientation ver- sus uniaxial compressive stress[J]. IEEE Elec Dev Lett, 2006, 27(12): 992-994. 被引量:1
  • 8WANG W C, CHANG S T, HUANG J, et al. 3D TCAD simulations of strained Si CMOS devices with silicon-based alloy stressors and stressed CESL [J]. Sol Sta Elec, 2009, 53(8): 880-887. 被引量:1
  • 9GHANI T, ARMSTRONG M, AUTH C. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS tran- sistors [C] // IEDM Tech Dig. Washington D C, USA. 2003: 978-980. 被引量:1
  • 10CHU M, SUN Y, AGHORAM U, et al. Strain: a solution for higher carrier mobility in nanoscale MOS- FETs[J]. Ann Review Mater Resear, 2009, 39(1): 203-229. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部