期刊文献+

基于广义高斯最大似然估计的小波域类LMMSE滤波算法 被引量:5

Wavelet Domain LMMSE-Like Denoising Algorithm Based on GGD ML Estimation
下载PDF
导出
摘要 基于小波系数服从广义高斯分布,该文采用最大似然(ML)准则估计普通图像在子带上的系数方差。该文提出的估计子是一个子带自适应因子和一个β次幂均值的乘积。与最近提出的SI-AdaptShr,LAWMAP和其它一些算法相比,所提出的算法取得了更好的去噪效果。进一步,一种简化的算法产生用于去除SAR图像的斑点噪声。这种新算法可以大大减少运算量,对大尺度的SAR图像后处理有帮助。 Based on the assumption that wavelet coefficients obey Generalized Gaussian Distribution (GGD), this paper adopts Maximum Likelihood (ML) principle to estimate wavelet coefficients variance of common images in sub-bands. The proposed estimator is product of a sub-band adjustable factor and a β power mean factor. Compared to the recently proposed SI-AdaptShr, LAWMAP and other wavelet-based methods, better de-noising results may be obtained for the proposed method. Furthermore, a simplified algorithm is also formed to de-speckle SAR images. It is shown that the new method may remarkably reduce the calculation amount and helpful for the post-processing of large scale SAR images.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第12期2853-2857,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60472086) 博士点基金(20050701014)资助课题
关键词 SAR图像去噪 广义高斯分布 口次方平均值 方差估计子 SAR image despeckling Generalized Gaussian Distribution (GGD) β power mean Variance estimator
  • 相关文献

参考文献15

  • 1Donoho D L. De-noising by soft-thresholding. IEEE Trans. on Inform. Theory, 1995, 41(5): 613-627. 被引量:1
  • 2Donoho D L and Johnstone I M. Ideal spatial adaption via wavelet shrinkage. Biometrika, 1994, 81(3): 425-455. 被引量:1
  • 3Donoho D L and Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Assoc., 1995, 90(432): 1200-1224. 被引量:1
  • 4Donoho D L and Johnstone I M. Wavelet shrinkage: Asymptopia? J. R. Star. Soc. B, Set. B, 1995, 57(2): 301-369. 被引量:1
  • 5Chang S G, Yu B, and Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. on Image Processing, 2000, 9(9): 1532-1546. 被引量:1
  • 6Chang S G, Yu B, and Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. on Image Processing, 2000, 9(9): 1522-1531. 被引量:1
  • 7Mihcak M K, Kozintsev I K, and Ramchandran K, et al.. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, 1999, 6(12): 300-303. 被引量:1
  • 8Varanasi M and Aazhang B. Parametric generalized gaussian density estimation. J.Acoust.Soc.Am., 1989, 86(4): 1404-1415. 被引量:1
  • 9Portilla J, Strela V, and Wainwright M J, et al.. Image denoising using scale mixture of Gaussians in the wavelet domain. IEEE Trans. on Image Processing, 2003, 12(11): 1338-1351 被引量:1
  • 10Starck J, Candes E, and Donoho D L. The curvelet transform for image denoising. IEEE Trans. on Image Processing, 2002 11(6): 670-684. 被引量:1

同被引文献55

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部