期刊文献+

曲线拟合确定阈值的非抽取小波贝叶斯图像去噪方法 被引量:5

Undecimated Wavelet Bayesian Image Denoising Method with Its Threshold Determined by Curve Fitting
下载PDF
导出
摘要 非抽取小波变换(UDWT)不仅具有时间和频率的局域特性,还具有良好的平移不变性,能有效抑制传统小波去噪方法产生的伪Gibbs现象.文中通过统计分析图像的UDWT系数,得到UDWT系数具有较强的非高斯统计特性的结论.在此基础上,应用广义高斯分布模型对系数进行建模,提出基于图像标准差的曲线拟合方法以提高图像噪声标准差估计值的精度,并以此确定去噪阈值.文中方法依据UDWT的平移不变特性有效抑制传统小波去噪方法出现的伪Gibbs现象,通过提高去噪阈值的精度以提高图像的去噪效果.大量仿真实验验证文中方法的有效性. The undecimated discrete wavelet transform(UDWT) possesses local features of time and frequency and shift-invariant property of reducing the pseudo-Gibbs phenomenon. In this paper, after the UDWT coefficients are analyzed, the conclusion that the UDWT coefficients have strong non-Gaussian statistical property is obtained. Grounded on the property, a generalized guassian distribution model is established. To improve the precision of standard deviation estimation of the noise image, a method of curve fitting is proposed based on the standard deviation of image, and thus the denoising threshold is determined. Based on the shift-invariant property of UDWT, the proposed method effectively reduces the pseudo-Gibbsphenomenon of the traditional wavelet denoising improving the accuracy of denoising threshold. effectiveness of the proposed method. method. Meanwhile, the denoising effect is enhanced by A large number of simulation experiments verifies the
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第4期322-331,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61402214 41271422) 教育部高等学校博士学科点专项科研基金项目(No.20132136110002) 辽宁省博士科研启动基金项目(No.20121076) 辽宁省教育厅科学研究项目(No.L2014423)资助~~
关键词 非抽取小波变换(UDWT) 广义高斯分布 图像去噪 曲线拟合 Undecimated Discrete Wavelet Transform (UDWT), Generalized Guassian Distribution,Image Denosing, Curve Fitting
  • 相关文献

参考文献15

  • 1CHEN G Y, XIE W F, ZttAO Y J. Wavelet-Based Inoising: A Brief Review//Proc of the 4th International Conference on Intelligent Control anti Information Processing. Beijing, China, 2013: 570-574. 被引量:1
  • 2DONOHO D L. De-noising by Soft-Thresholding. IEEE Trans on In- formation Theory, 1995, 41 ( 3 ) : 613-627. 被引量:1
  • 3李智,张根耀,王蓓.基于一种新的阈值函数的小波图像去噪[J].计算机技术与发展,2014,24(11):100-102. 被引量:8
  • 4李秋妮,晁爱农,史德琴,孔星炜.一种新的小波半软阈值图像去噪方法[J].计算机工程与科学,2014,36(8):1566-1570. 被引量:18
  • 5CftANG S G, YU B, VETI'ERLI M. Adaptive Wavelet Thresholding for Image Denoising and Compression. IEEE Trans on hnage Pro- cessing, 2000, 9(9) : 1532-1546. 被引量:1
  • 6CHANG S G, YU B, VETFERLI M. Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising. IEEE Trans on Image Proeessing, 2000, 9(9) : 1522-1531. 被引量:1
  • 7侯建华,熊承义,田晓梅.广义高斯分布及其在图像去噪中的应用[J].中南民族大学学报(自然科学版),2005,24(3):44-47. 被引量:12
  • 8MATSUYAMA E, TSAI D Y, LEE Y, et al. Comparison of a Dis- crete Wavelet Transform Method and a Modifiod Undecimated Dis- crate Wavelet Transform Method for Denoising of Mammogranns //Proe of the 35th Annual International Conference on Engineering in Medicine and Biology Society. Osaka, Japan, 2013: 3403-3406. 被引量:1
  • 9STARCK J L, FADILI J, MURTAGH F. The Undecimated Wavelet Decomposition and Its Reconstruction. IEEE Trans on Image Pro- cessing, 2007, 16(2) : 297-309. 被引量:1
  • 10WANG X Y, YANG H Y, FU Z K. A New Wavelet-Based Image Denoising Using Undecimated Discrete Wavelet Transform and Least Square Support Vector Machine. Expert Systems with Applications, 2010, 37(10) : 7040-7049. 被引量:1

二级参考文献42

共引文献39

同被引文献34

引证文献5

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部