期刊文献+

激波结构内流动问题的气体运动论描述 被引量:4

Gas-kinetic description of shock wave structures by solving Boltzmann model equation
下载PDF
导出
摘要 从介观Boltzmann速度分布函数理论出发,发展计及分子粘性碰撞截面与扩散碰撞截面,可描述各流域一维气体流动问题的Boltzmann简化速度分布函数方程及其气体运动论数值计算方法。通过对不同Knudsen数下非定常激波管流动及不同马赫数定常正激波结构问题数值模拟,研究分析不同流区的激波突跃变化过程以及近连续流、稀薄过渡流特有的分子输运现象,揭示不同马赫数、不同分子模型的激波内流动与传热变化规律,证实基于Bo-ltzmann模型方程的气体运动论数值计算方法用于激波结构内流动研究的准确可靠性。 Based on the mesoscopic theory of the Bohzmann-type velocity distribution function, the Boltzmann model equation describing the one-dimensional gas flows from various flow regimes can be presented with developing the molecular models involving in the viscosity cross-section and the diffusion cross-section. The gas-kinetic numerical method for directly solving the velocity distribution function is studied by introducing the reduced velocity distribution functions and the discrete velocity ordinate method, in which the unsteady time-splitting method and the NND scheme from computational fluid dynamics are applied. To study the inner flows of shock wave structures, the one-dimensional unsteady shock-tube problems with various Knudsen numbers and the steady normal shock wave problems with different Mach numbers are numerically simulated. The varying process of the shock wave disturbances from various flow regimes is studied, the molecular transport phe-nomena from near-continuum and rarefied transition flows are analyzed specially. The varying laws of gas flow and heat flux of the shock wave structures are revealed with different Mach numbers and molecular models. The computing practice has confirmed the good precision and reliability of the gas-kinetic numerical algorithm in solving the inner flow problems of shock wave structures.
出处 《空气动力学学报》 EI CSCD 北大核心 2007年第4期411-418,436,共9页 Acta Aerodynamica Sinica
基金 国家自然科学基金面上项目(90205009)资助
关键词 激波结构 BOLTZMANN模型方程 速度分布函数 离散速度坐标法 有限差分计算 shock wave structure Boltzmann model equation velocity distribution function discrete velocity ordinatemethod finite difference computation
  • 相关文献

参考文献15

  • 1LIEPMANN H W, ROSHKO A. Elements of gas dynamics [ M ]. Wiley, New York, 1957. 被引量:1
  • 2PHAM-VAN-DIEP G, ERWIN D, MUNTZ E P. Nonequilibrium molecular motion in a hypersonic shock wave [ J ]. Science, 1989, 245(2): 624-626. 被引量:1
  • 3SALOMONS E , MARESCHAL M. Usefulness of the Burner description of strong shock waves [ J ]. Physical Review Letters, 1992, 69(2): 269-272. 被引量:1
  • 4CROUSEILLES N, DEGOND P ,LEMOU M. A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann-BGK equation[J]. Journal of Computational Physics, 2004, 199: 776-808. 被引量:1
  • 5BIRD G A. Aspects of the structure of strong shock waves[J].Phys. Fluids, 1970, 13(5): 1172-1177. 被引量:1
  • 6BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford University Press, London, 1994. 被引量:1
  • 7MUCKENFUSS C. Some aspects of shock structure according to the bimodal model[J]. Phys. Fluids, 1962, 5: 1325- 1336. 被引量:1
  • 8HUANG K. Statistical mechanics[ M]. Chap.6, Wiley, New York, 1965. 被引量:1
  • 9SHAKHOV E M. Kinetic model equations and numerical resuits[ A]. Proceedings of 14th International Symposium on Rarefied Gas Dynamics[C]. Tsukuba, 1984, 137-148. 被引量:1
  • 10BIRD G A. Monte Carlo simulation in an engineering context [A ]. Proceedings of International Symposium on Rarefied Gas Dynamics, Progr. Astro. Aero., [ C] 1981, 74: 239- 255. 被引量:1

二级参考文献7

  • 1张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,7(2):1431-165. 被引量:80
  • 2Xu K,Von Karman Institute for Fluid Dynamics Lecture Series,1998年 被引量:1
  • 3Deng Z T,33rd Aerospace Science Meeting and Exhibit,1995年,912页 被引量:1
  • 4Yang J Y,J Comput Phys,1995年,120期,323页 被引量:1
  • 5Zhang H X,Adv Appl Mech,1992年,29卷,193页 被引量:1
  • 6张涵信,空气动力学学报,1988年,6卷,2期,143页 被引量:1
  • 7Chu C K,Physics Fluids,1965年,8卷,1期,1222页 被引量:1

共引文献26

同被引文献41

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部