摘要
研究了目标函数的系数为变量的线性规划(即多维参数规划)问题,判断了在一定条件下其最优解的存在性,并给出了求其最优解的一种方法,证明了当F(x,t)关于t线性且minx∈XF(x,t)(t∈T)一致非退化时,minx∈XF(x,t)(t∈T)的最优解为有限个一般线性规划最优解的最小值。
The linear programming of changeable coefficients in objective function is studied. An answer to the question which the optimal solution exists under certain conditions is made out. A method for obtaining optimal solution is given. It is proved that the optimal solution of min x∈X F(x,t) (t∈T) is the minimum of lots of optimal solutions of linear programming, while F(x,t) is linear on variable t and min x∈X F(x,t) (t∈T) non degenerative uniformly.
出处
《石油大学学报(自然科学版)》
CSCD
1997年第3期105-106,共2页
Journal of the University of Petroleum,China(Edition of Natural Science)
关键词
凸多面体
目标函数
多维参数
最优解
线性规划
Convex polyhedron
Objective function
Multi_dimensional parameter
Optimal solution