期刊文献+

基于人工神经网络的降雨径流模拟研究 被引量:12

Study on rainfall-runoff simulation based on artificial neural networks
下载PDF
导出
摘要 针对水库径流难以预测的问题,采用改进的动量-自适应学习率调整BP神经网络方法,以南告水库作为研究对象,对水库的日资料进行径流模拟,并对该模型在径流模拟中的方法和难点问题进行分析和探讨。改进的BP模型模拟的结果与三水源新安江模型的模拟结果相比较,探讨改进的BP模型应用于水文模拟的可行性。研究结果表明,改进的BP模型用于水文模拟是可行的。 In view of the difficult predictions of reservoir inflow runoff, an improved back-propagation (BP) neural networks model is proposed in this paper. It is the joints of additional momentum algorithm and self-adaptive learning rate algorithm. Approaches and key technologies when applying the improved model in runoff simulation are discussed. The improved BP model is applied for simulating daily streamflows in the upper area of Nangao Reservoir at Shanwei City, Guangdong Province, China. The experiment results demonstrate the applicability of the improved BP model. Comparison with the Xinanjiang model shows that this method is feasible and effective. It also demonstrates that the ANN is a promising tool for simulating various hydrologic processes.
出处 《辽宁工程技术大学学报(自然科学版)》 EI CAS 北大核心 2007年第6期940-943,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(50479017)
关键词 BP模型 改进 降雨径流模拟 人工神经网络 新安江模型 BPmodel improve rainfall-runoffsimulation artificial neuralnetworks Xinanjiangmodel
  • 相关文献

参考文献8

  • 1Singh, V.E, Hydrologic Systems, Vol. 2. Watershed Modeling[M] . Prentice Hall, Inc., Englewood Cliffs, New Jersey. 1989. 被引量:1
  • 2张忠永,王明涛,贾惠艳.人工神经网络在地下水动态预测中的应用[J].辽宁工程技术大学学报(自然科学版),2002,21(4):504-506. 被引量:18
  • 3Qin Ju, Zhongbo Yu, Zhenchun Hao, et al. Hydrologic Simulations with Artificial Neural Networks[C].Angela Burgess. Third International Conference on Natural Computation. Los Alamitos: IEEE Computer Society Publications, 2007(2). 22-27 被引量:1
  • 4苑希民等著..神经网络和遗传算法在水科学领域的应用[M].北京:中国水利水电出版社,2002:175.
  • 5Rumelhart D E, et al. Learning Representation by BP Errors[J]. Nature (London), 1986(7): 149-154. 被引量:1
  • 6Patrick E et al. Minimisation Method for Training Feed forward Neural Network[J]. Neural Network. 1994(7):1-11. 被引量:1
  • 7彭松,方祖祥.BP神经网络学习算法的联合优化[J].电路与系统学报,2000,5(3):26-30. 被引量:25
  • 8赵人俊编著..流域水文模拟 新安江模型与陕北模型[M].北京:水利电力出版社,1984:180.

二级参考文献12

共引文献41

同被引文献132

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部