期刊文献+

基于IRST的并行时序模式挖掘算法 被引量:3

Parallel mining sequence pattern algorithm based on IRST
下载PDF
导出
摘要 提出一种建立在集群式高性能计算机上基于互关联后继树的并行时序模式挖掘算法,将数据线段化、树的建立及模式发现在多处理机上进行并行处理,有效地改进了算法的执行效率。实验结果表明,此算法较之串行算法有较高的效率。 This paper proposed a parallel mining sequence pattern algorithm based on IRST. It distributeed mining tasks to multiprocessor, including sequence segment, create SIRST and finding frequent patterns. Experiments show that it is more efficient.
出处 《计算机应用研究》 CSCD 北大核心 2007年第12期137-140,共4页 Application Research of Computers
基金 国家地震科学联合基金资助项目(104090) 上海市自然科学基金资助项目(7A05468)
关键词 互关联后继树 时间序列 时序模式 并行计算 IRST(inter relevant successive trees) time series sequence pattern parallel computing
  • 相关文献

参考文献4

二级参考文献12

  • 1胡运发.互关联后继树—一种新型全文数据库数学模型.技术报告,CIT-02—03[R].计算机与信息技术系,复旦大学,2002.. 被引量:1
  • 2[1]Han J, Pei J, Yi Y. Mining Frequent Patterns Without Candidate Generation. Proc. of 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD' 00), 2000:1-12 被引量:1
  • 3[2]Han J, Pei J. Mining Frequent Patterns by Pattern-Growth: Methodology and Implications. ACM SIGKDD Explorations (Special Issue on Scaleble Data Mining Algorithms), 2000, 2(2): 14-20 被引量:1
  • 4[3]Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules.Proc. ofInt. Conf. on Very Large Data Bases, 1994:487-499 被引量:1
  • 5Han J, Kamber M. Data Mining: Concepts & Techniques.Boston: Morgan Kaufmann Publishers, 2001. 被引量:1
  • 6Mannila H, Toivonen H. Discovering Generalized Episodes Using Minimal Occurrences. In: Proc of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). Portland Oregon: AAAI Press, 1996, 146-151. 被引量:1
  • 7Das G, Lin K, Mannila H, Renganathan G. Smyth P. Rule Discovery from Time Series. In: Proc of the 4th International Conference on Knowledge Discovery and Data Mining, New York, NY, 1998, 16-22. 被引量:1
  • 8Hoppner F. L.eaming Temporal Rules from State Sequences. In: Proc of the 17th International Joint Conference on Artificial Intelligence, Seattle, Washington, USA, 2001, 183- 190. 被引量:1
  • 9Keogh E J, Pazzani M J. Relevance Feedback Retrieval of Time Seties. In: Proc of the 22th International Conference on Research and Development in Information Retrieval. San Francisco, CA, USA, 1999, 89-95. 被引量:1
  • 10Keogh E J, Smyth P. A Probabilistic Approach to Fast Pattern Matching in Time Series Databases. In: Proc of the 3rd International Conference on Knowledge Discovery and Data Mining.Newport Beach, CA, 1997, 24- 30. 被引量:1

共引文献4

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部