期刊文献+

数据发布中的匿名化技术研究综述 被引量:6

Survey of research on anonymilization technology in data publication
下载PDF
导出
摘要 匿名化技术被公认为是解决隐私信息泄漏问题的一个好方法。当前匿名化技术的研究工作大致可以分为匿名策略的研究和匿名实现技术研究两类。分别介绍了这两类研究近年来的主要成果,并对其进行了比较,对其中尚未解决的问题进行了客观的分析。 Anonymilization, as known to all, is a good method to solve the leakage of confidential information, once after it was proposed. The research on anonymilization technology can be divided into two categories, one on the generalization principle, and the other on the implementation ways. In this paper, we gave an overview study of the status quo and trend of the research, and discussed the open and challenging problems in anonymilization technology.
出处 《计算机应用》 CSCD 北大核心 2007年第10期2361-2364,共4页 journal of Computer Applications
基金 清华大学基础研究基金资助项目(JCqn2005022) 浙江自然科学基金资助项目(Y105230)
关键词 隐私保护 匿名化 K-匿名 隐私信息 数据安全 privacy-persevering anonymilization k-anonymity privacy information data security
  • 相关文献

参考文献21

  • 1SWEENEY L.K-anonymity:a model for protecting privacy[J].Journal on Uncertainty,Fuzziness and Knowledge-based Systems,2002,10(5):557-570. 被引量:1
  • 2XIAO X,TAO Y.M-invariance:towards privacy preserving re-publication of dynamic datasets[C]// Proceedings of ACM Conference on Management of Data (SIGMOD).New York:ACM Press,2007:689-700. 被引量:1
  • 3MACHANAVAJJHALA A,GEHRKE J,KIFER D.l-diversity:Privacy beyond k-anonymity[C]// ACM Transactions on Knowledge Discovery from Data (TKDD).New York:ACM Press,2007,1(1). 被引量:1
  • 4WONG R C,LI J,FU A W,et al.(a,k)-Anonymity:an enhanced k-anonymity model for privacy-preserving data publishing[C]// Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining.New York:ACM Press,2006:754-759. 被引量:1
  • 5TRUTA T M,VINAY B.Privacy protection:p-Sensitive k-Anonymity property[C]// Proceedings of the 22nd International Conference on Data Engineering Workshops.Washington DC:IEEE Computer Society,2006:94. 被引量:1
  • 6LI N,LI T.t-closeness:Privacy beyond k-anonymity and l-diversity[C]// Proceedings of IEEE 23rd International Conference on Data Engineering.Istanbul:IEEE Computer Society,2007:106-115. 被引量:1
  • 7KOUDAS N,SRIVASTAVA D,YU T,et al.Aggregate query answering on anonymized tables[C]// Proceedings of the 23th International Conference on Data Engineering.[S.l.]:IEEE Computer Society,2007:116-125. 被引量:1
  • 8BYUN J-W,SOHN Y,BERTINO E,et al.Secure anonymization for incremental datasets[C]// The 3rd VLDB Workshop on Secure Data management (SDM).Germany:Springer-Verlag,2006:48-63. 被引量:1
  • 9XIAO X,TAO Y.Personalized privacy preservation[C]// Proceedings of ACM Conference on Management of Data (SIGMOD).New York:ACM Press,2006:229-240. 被引量:1
  • 10XU J,WANG W,PEI J,et al.Utility-based anonymization using local recoding[C]// Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining.New York:ACM Press,2006:785-790. 被引量:1

同被引文献93

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 3Sweeney L. K-anonymity:a model for protecting privacy [J]. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002,10 (5) : 557-570. 被引量:1
  • 4Samarati P,Sweeney L. Protecting privacy when disclosing information : k -anonymity and its enforcement through generalization and suppression: proceedings of the IEEE Symposium on Research in Security and Privacy[R]. Technical report, CMU SRI, 1998:1-19. 被引量:1
  • 5Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression [J]. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002,10(5) : 571-588. 被引量:1
  • 6Maehanavajjhala A,Gehrke J,Kifer D. L diversity: Privacy beyond k-anonymity: proceedings of the 22nd IEEE International Conference on Data Engineering (ICDE ' 06 ) [C]. Atlanta, GA, USA : IEEE Press, 2006 : 24-36. 被引量:1
  • 7Wong R C,Li J,Fu A W,et al. (a,k) -Anonymity:an enhanced k-anonymity model for privacy-preserving data publishing: proceedings of 12th ACM SIGKDD international conference on knowledge discovery and data mining [C]. New York: ACM Press, 2006: 754- 759. 被引量:1
  • 8Truta T M, Vinay B. Privacy protection: p -Sensitive k - anonymity property : proceedings of the 22nd International Conference on Data Engineering Workshops [C]. Washington DC: IEEE Computer Society, 2006 : 94. 被引量:1
  • 9Koudas N ,Srivastava D, Yu T,et al. Aggregate query answering on anonymized tables: proceedings of the 23rd International Conference on Data Engineering[C]. Istanbul : IEEE Computer Society, 2007 : 116-125. 被引量:1
  • 10Li N ,Li T. t -closeness :privacy beyond k -anonymity and 1-diversity:proceedings of IEEE 23rd International Conference on Data Engineering [C]. Istanbul: IEEE Computer Society, 2007 : 106-115. 被引量:1

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部