摘要
利用Leray-Schauder度理论和Wirtinger-type不等式,给出了非线性n阶常微分方程u^(n)=f(t,u,u′,…,u^(n-1))-e(t),0〈t〈1,满足n点边界条件u^(n-3)(0)=0,u^(i)(ηi)=0,i=0,1,2,…,n-3,u^(n-3)(1)=0的解的存在性和惟一性定理。
By using Leray-schauder degree theory and Wirtinger-type inequalities, the existence and uniqueness theorems for n th-order nonlinear ordinary differential equation u^( n ) = f( t, u, u′,…, u ^( n - 1 ) ) - e ( t ), 0 〈 t 〈 1, with n-point boundary conditions u^(n-3)(0) = 0, u^(i)(ηi) = 0, i = 0,1,2,…, n - 3, u^(n-3)(1) =0 are given.
出处
《北华大学学报(自然科学版)》
CAS
2007年第6期484-487,共4页
Journal of Beihua University(Natural Science)
关键词
边值问题
存在性
惟一性
Boundary value problem
Existence
Uniqueness