摘要
针对直觉指数所表征的中立证据中支持与反对的程度呈均衡状态时无法表述的问题,提出一种直觉模糊熵的构造方法.首先基于均衡状态假设,揭示了影响直觉模糊熵大小的3个相互作用因素之间的内部关系,给出了直觉模糊熵的几何解释;然后分析了满足直觉模糊熵的直观约束条件,给出一种直觉模糊熵的公理化定义,揭示了直觉模糊熵最小值计算性质;最后通过算例分析比较,验证了所提出方法的正确性、合理性和有效性.
To the problem that intuitionistic fuzzy entropy (IFE) can not be expressed in the equilibrium state of supportability and opposability of neutral evidences indicated in the intuitionistic index, a type of technique for constructing IFE is proposed. First, based on the hypothesis of an equilibrium state, the internal relationships of three factors of interactitities among rules impacting the magnitude of IFE are revealed and the geometrical illustration is presented. Then, a set of intutionistic restrictive conditions for IFE are analyzed. An axiomatized definition of IFE is proposed and the minimum calculation property is indicated. Finally, through analyzing and comparing by a set of calculating examples, the results show the correction, reasonability and effectiveness of the proposed technique.
出处
《控制与决策》
EI
CSCD
北大核心
2007年第12期1390-1394,共5页
Control and Decision
基金
国家自然科学基金项目(60773209)
陕西省自然科学基金项目(2006F18)
关键词
直觉模糊集
直觉模糊熵
直觉指数
隶属度
非隶属度
Intuitionistic fuzzy sets
Intuitionistic fuzzy entropy
Intuitionistic index
Membership degree
Nonmembership degree