期刊文献+

改进的核空间直觉模糊C-均值聚类分割算法 被引量:1

Improve kernel space intuitionistic fuzzy C-means clustering segmentation algorithm
下载PDF
导出
摘要 针对鲁棒模糊局部信息C-均值聚类分割算法易丢失图像细节的问题,提出一种改进的核空间直觉模糊C-均值聚类算法。将像素空间邻域信息和直觉指数引入到鲁棒模糊局部信息C-均值聚类目标函数,给出改进的像素空间邻域信息约束的聚类目标函数,对其聚类目标函数最优化推导并得到新的隶属度和聚类中心迭代表达式,并设计相应的图像分割算法,以便提高图像局部信息的有效分割能力。实验结果表明,改进的核空间直觉模糊聚类分割算法相比现有鲁棒模糊局部信息C-均值聚类分割算法能获得更好的分割效果。 In view of the issues that an improve kernel space intuitionistic fuzzy C-means clustering segmentation algorithm is proposed in this paper to tackle the problem that the fuzzy c-means clustering with fuzzy weighted factor and kernel metric (KWFLICM) segmentation algorithm could not keep the image details well. By introducing the pixel spatial neighbor information and the hesitation degree into the objective function of the KWFLICM algorithm, a new pixel spatial neighbor information constraints clustering objective function is proposed. By optimizing the clustering objective function, the new clustering center and membership iterative expressions are obtained. The corresponding image segmentation algorithm is presented to improve the ability of effective segmentation of image local information. Experimental results demonstrate that it can get the better results than that of KWFLICM.
出处 《西安邮电大学学报》 2015年第6期45-50,共6页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金重点资助项目(61136002) 陕西省自然科学基金资助项目(2014JM8331 2014JQ5138)
关键词 模糊C-均值聚类 像素空间邻域信息 核空间 直觉模糊集 fuzzy C-means cluster, pixel spatial neighbor information, kernel space, intuitionistic fuzzy set
  • 相关文献

参考文献17

  • 1Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8(3):338-356. 被引量:1
  • 2Bezdek J C. Pattern Recognition with Fuzzy objectivefunction algorithms[M]. New York: Plenum Press,1981:95-107. 被引量:1
  • 3刘健庄.基于二维直方图的图象模糊聚类分割方法[J].电子学报,1992,20(9):40-46. 被引量:66
  • 4吴成茂,张干.灰度级加权的直方图模糊熵阈值分割法[J].西安邮电大学学报,2013,18(5):8-13. 被引量:5
  • 5Krinidis S,Chatzis V. A robust fuzzy local informa-tion C-Means clustering algorithm. [J]. Image Pro-cessing IEEE Transactions on, 2010, 19(5): 1328-1337. 被引量:1
  • 6Celik T,Hk. L. Comments on w A Robust Fuzzy Lo-cal Information C-Means Clustering Algorithm” [J].IEEE Transactions on Image Processing,2013,22(3):1258-1261. 被引量:1
  • 7Liew A W C,Yan H. An adaptive spatial fuzzy cluste-ring algorithm for 3-D MR image segmentation [J].IEEE Trans on Medical Imaging, 2003? 22 ( 9 ):1063-1075. 被引量:1
  • 8Kim J N, Cai W D* Feng D G? et al. Segmentation ofVOI From Multidimensional Dynamic PET Images byIntegrating Spatial and Temporal Features [J]. IEEETrans on Technology in Biomedicine, 2006,10(4) : 637-646. 被引量:1
  • 9Chen Songcan, Zhang Daoqiang. Robust image seg-mentation using FCM with spatial constraints based onnew kernel-induced distance measure[J]. IEEE Transon Systems, Man, and Cybernetics, Part B: Cybernet-ics,2004,34(4) :1907-1916. 被引量:1
  • 10李琳,范九伦,赵凤.模糊C-均值聚类图像分割算法的一种改进[J].西安邮电大学学报,2014,19(5):56-60. 被引量:24

二级参考文献25

  • 1刘健庄,1990年 被引量:1
  • 2章毓晋.图像分割[M].北京:科学出版社,2001.. 被引量:577
  • 3Ahmed M N,Yamany S M,Mohamed N,et al.A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Transactions on Medical Imaging,2002,21(3):193-199. 被引量:1
  • 4Krinidis S,Chatzis V.A robust fuzzy local information c-means clustering algorithm[J].IEEE Transactions on Image Processing,2010,19(5):1328-1337. 被引量:1
  • 5Chen Songcan,Zhang Daoqiang.Robust image segmentation using FCM with spatial constraints based on new kernel-induce distance measure[J].IEEE Transactions on System,Man and Cybernetics.Part B:Cybernetics,2004,34(4):1907-1916. 被引量:1
  • 6Minh N D,Martin V.Wavelet-based texture retrieval using generalized Gaussian density and KullbackLeibler distance[J].IEEE Transactions on Image Processing,2002,11(2):146-158. 被引量:1
  • 7章毓晋.图像工程[M]{H}北京:清华大学出版社,201373-74. 被引量:1
  • 8Fu K S,Mui J K. A survey on image segmentation[J].{H}Pattern Recognition,1981,(01):3-16. 被引量:1
  • 9Rafael C,Gonzalez,Richard E. Woods Digital Image Processing Third Edition[M].Publishing house of electronics industry,2011.711-712. 被引量:1
  • 10Kapur J N,Sahoo P K,Wong A K C. A new method for gray level picture thresholding using the entropy of the histogram[J].{H}Computer Vision Graphics and Image Processing,1985,(03):273-285. 被引量:1

共引文献90

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部