期刊文献+

视频监视中的运动目标跟踪算法 被引量:8

Novel tacking algorithm for video surveillance
下载PDF
导出
摘要 提出了一种新的运动目标跟踪算法。通过预测运动目标下一时刻的位置以及缩小目标搜索范围来提高跟踪速度。该算法使用运动目标加速度运动位移方程预测下一时刻目标可能出现的位置,使用预测位置误差方程估计运动目标搜索范围,并使用IIR滤波器对目标运动速度、加速度等参数自适应地修正。实验证明,该算法即使当运动目标做加速运动时,也可准确地预测运动目标的位置,缩小目标搜索范围,进而提高目标跟踪速度。 A novel moving objects tracking algorithm is proposed. The tracking speed is raised by virtue of predicting the position that a moving object arrives at the next time and reducing the search region. In the tracking algorithm, an acceleration equation is calculated for estimating the new position of a moving object, and an error formula of predictive position is used to adjust the moving object search region automatically. In order to predict the future position accurately and simplify computation complexity, by using IIR filters, several motion parameters such as velocity and acceleration are updated adaptively each frame. Several experiments are given to show that the proposed algorithm can improve object tracking speed by means of predicting a moving object position and reducing search region even if this moving object undergoes accelerated motion.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2007年第11期1991-1993,共3页 Systems Engineering and Electronics
基金 国家"863"高技术研究发展计划资助课题(2006AA01Z324)
关键词 视频监视 运动目标跟踪 位置预测 video surveillance moving objects tracking position prediction
  • 相关文献

参考文献7

  • 1Collins R T,Lipton A J,et al.Introduction to the special section on video surveillance[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22 (8):745-746. 被引量:1
  • 2Hu Weiming,Xiao Xuejuan,Tan Tieniu.Traffic accident prediction using vehicle tracking and trajectory analysis[J].Intelligent Transportation System,2003,11:220-225. 被引量:1
  • 3He Chao,Zheng Y F,Ahalt S C.Object tracking using the garbor wavelet transfom and the golden section algorithm[J].IEEE Trans.on Multimedia,2002,4 (4):528-538. 被引量:1
  • 4Boyd J E,Meloche J,et al.Statistical tracking in video traffic surveillance[C]//The Proceedings of the Seventh IEEE International Conference on Computer Vision,1999:163-168. 被引量:1
  • 5Haritaoglu I,Harwood D,et al.Active Outdoor Surveillance[C]//Proceedings.International Con f erence on Image Analysis and Processing,1999:1096-1099. 被引量:1
  • 6Murat T.Digital Video Processing[M].Prentice Hall,Inc,1996:94-95. 被引量:1
  • 7Collins,Lipton,Kanade,Fujiyoshi,et al.A System for Video Surveillance and Monitoring:VSAM Final Report.Technical report CMU-RI-TR-00-12[M].Robotics Institute Carnegie Mellon University,2000. 被引量:1

同被引文献38

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2Carlos H Morimoto, Marcio R M Mimica. Eye gaze tracking techniques for interactive applications[J]. Computer Vision and Image Understanding, 2005,98 : 4-24. 被引量:1
  • 3Zhu Z,Ji Q. Eye and gaze tracking for interactive graphic display[J]. Machine Vision and Applications,2004,15(3) : 139-148. 被引量:1
  • 4Ritchie Argue, Matthew Boardman, Jonathan Doyle, Glenn Hickey. Building a Low - Cost to Track Eye Movement[D]. Faculty of Computer Science, Dalhousie University, 2004. 被引量:1
  • 5Lipton A,Fujiyoshi H, Patil R S. Moving target classification and tracking from Real - time video[A]. IEEE Proc. on WACV, 1998.8-- 14. 被引量:1
  • 6Collins Robert T, Lipton Alan J,Takeo Kanade. Learning patterns of activity using real - time tracking[JJ. IEEE Trans. on Pattern Analysis and Machine Intelligence,2000,22 (8) :747--757. 被引量:1
  • 7Morimoto C H, Mimica M R M. Eye gaze tracking techniques for interactive applications [J]. CVIU, 2005,98(1) : 4--24. 被引量:1
  • 8Dong Hyun Yoo,et al. Non- intrusive eye gaze estimation using a projective invariant under head movement [A]. International Conference on Robotics and Automation[C]. IEEE, U. S. , Orlando, Florida, 2006. 3443 --3448. 被引量:1
  • 9Ritchie Argue, Matthew Boardman, Jonathan Doyle, Glenn Hickey. Bui/ding a Low-Cost to Track Eye Movement[EB/ OL]. http://servl. ist. psu. edu: 8080/viewdoc/summary? doi = 10.1.1.92.2962,2004. 被引量:1
  • 10Zhiwei Zhu, Kikuo Fujimura, Qiang Ji. Real-time detection and tracking under various light condifions[J]. Computer Vision and Image Understanding, 2002,98( 1 ) : 79 - 85. 被引量:1

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部