摘要
1978年,M.Gardner发现了一对古怪的骰子(称之为Sicherman骰子),其中一只六个面上的点数分别为1,2,2,3,3,4,另一只六个面上的点数分别为1,3,4,5,6,8.这对Sicherman骰子与一对普通的骰子(六个面上的点数分别为1,2,3,4,5,6)有相同的投掷效果.该文考虑用正八面体来做骰子,证明了恰有4对正八面体骰子有相同的投掷效果.
In 1978, M. Gardner discovered a pair of weird dice (called Sicherman dice), one of which was labeled on the six faces of one cube with integers 1, 2, 2, 3, 3 , 4 and on the six faces of another cube with integers 1, 3, 4, 5, 6, 8, then the probability of obtaining any particular sum with this dice is the same as the probability of rolling that sum with ordinary dice. In this paper, we consider the case of the dice made by octahedrons. We prove that there are exactly 4 pairs dice made by regular 8 - polyhedrons which have the same rolling probability.
出处
《广西师范学院学报(自然科学版)》
2007年第2期16-18,共3页
Journal of Guangxi Teachers Education University(Natural Science Edition)
基金
广西科学基金项目(0575052)
广西研究生教育创新计划项目(2006106030701M05)
广西教育厅科研基金项目
关键词
正八面体
骰子
多项式环
唯一分解
投掷效果
octahedron
dice
polynomial ring
unique factorization
rolling probability