摘要
本文对随机轨道模型中颗粒相常微分方程组的刚性问题进行了分析,结果表明:当采用常规算法如四阶Runge-kutta法求解方程组时,方程组的刚性是导致某些情况下计算发散或计算时间过长的原因。为此,本文将适用于求解刚性方程组的Gear算法应用于随机轨道模型的计算中,取得了良好的效果.
This paper analysises the trigidity of differential equations of particle phase in stochastic trajactory model. It is shown that the trigidity of differential equations is the reason of computing failure in some cases when we use traditional algorithm such as Runge-Kutta algorithm to solve these equations. To overcome this difficulty the Gear algorithm which is especially suitable for solving rigid differential equations has been introduced in the calculating of stochastic trajactory model and achieves considerable success.
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
1997年第5期634-638,共5页
Journal of Engineering Thermophysics
基金
国家科技攀登计划
关键词
随机轨道模型
刚性常微分方程组
Gear算法
stochastic trajactory model, rigid differential equations, gear algorithm