期刊文献+

浅谈基于机器学习的木材干燥建模方法 被引量:2

Discussion on modeling method of wood drying based on machine studying
下载PDF
导出
摘要 介绍了目前国内外对于木材干燥建模的研究现状。针对木材干燥过程的强耦合、非线性等特点,探讨了应用目前常用的两种基于机器学习的非线性系统建模方法-神经网络和支持向量机建立木材干燥模型的可行性,给出了基于神经网络和支持向量机的木材干燥模型,并分析了这两种木材干燥模型的结构和优缺点。 This paper introduced the present research status of wood drying modeling method. Based on the nonlinear, strong coupling characteristic of wood drying system, discussed the feasibility of two common using nonlinear system modeling methods for wood drying modeling: neural networks and support vector Machines. This paper also built wood drying model based on ANN and SVM, and analyzed the frame, advantage and disadvantage of the two methods.
机构地区 东北林业大学
出处 《木材加工机械》 2007年第5期42-45,共4页 Wood Processing Machinery
关键词 木材干燥 建模 神经网络 支持向量机 wood drying modeling neural networks, support vector machine
  • 相关文献

参考文献21

  • 1张璧光.我国木材干燥技术概况[J].通用机械,2005(8):32-33. 被引量:4
  • 2Mounji H, Kouali M.EL.. Modeling of the drying process of wood in 3-Dimensions[J]. Drying Technology,1991,9(5):1259-1314. 被引量:1
  • 3Cloutier A, Fortin Y. A model of moisture movement in wood based on water potential and the determination of the effective water conductivity[J]. Wood Science Technology, 1993,27(2):95-114. 被引量:1
  • 4Zhang D.S., Mujumdar A.S.. Deformation and stress analysis of porous capillarity bodies during intermittent volumetric thermal drying[J]. Drying Technology, 1992, 10(2): 421-443. 被引量:1
  • 5Ormarsson S, Dahlblom O, Petersson H. A numerical study of the shape stability of sawn timber subjected to moisture variation[J]. Part l:Theory. Wood Science and Technology, 1998, 32(5):325-334. 被引量:1
  • 6Givon Yan, Clarence W. Wang. Modeling and adaptive wood. WASTED International De Siliva, Xiaochun G. control of a kiln dryer for Conference on Control and Applications, Banff, Canada, July 25-29,1999:144-149. 被引量:1
  • 7王金刚,王海英,鲁世昌.木材干燥窑的建模与参数辨识[J].哈尔滨理工大学学报,2002,7(1):7-10. 被引量:2
  • 8刘应安.木材干燥应力数学模型[J].东北林业大学学报,1998,26(5):56-59. 被引量:5
  • 9胡慕伊.木材干燥基准数学模型的研究与应用[J].林产工业,1997,24(6):4-6. 被引量:5
  • 10Tarasiewicz S, Leger F. Modeling simulation and control of the wood drying process[J]. Part 1. A set of PDE' s as an internal model. Drying Technology, 1998, 16(6): 1075-1084. 被引量:1

二级参考文献59

  • 1若利P 莫尔-谢瓦利埃F.木材干燥[M].北京:中国林业出版社,1985.. 被引量:1
  • 2吴玉 范钦义.系统辨识与自适应控制[M].哈尔滨工业大学出版社,1987.. 被引量:1
  • 3[1]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1999. 被引量:1
  • 4[2]Müller K R, Smola A J, Rats¨ch G, et al. Predicting timeserieswithsupport vector machines[A]. Proc ICANN′97[C]. New York: Springer,1997.999-1004. 被引量:1
  • 5[3]Drucker H, Burges C J, Kaufman L, et al. Support vector regression machines[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.155-161. 被引量:1
  • 6[4]Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.281-287. 被引量:1
  • 7[5]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. 5th Annual ACM Workshop COLT[C]. Pittsburgh: ACM Press,1992.144-152. 被引量:1
  • 8[6]Campbell C. Algorithmic approaches to training support vector machnies: A survey[A]. Proc ESANN′2000[C]. Belgium: D-Facto Publications,2000.27-36. 被引量:1
  • 9[7]Marsh L S, Albright L D. Economically optimum day temperature for greenhouse hydroponic lettuce production - Part 2: Results and simulations[J]. Trans ASAE,1991,34(3):557-562. 被引量:1
  • 10[8]Maksarov D, Chalabi Z S. Computing bounds on greenhouseenergyrequirementsusingboundederror approach[J]. Contr Eng Prac,1998,(6):947-995. 被引量:1

共引文献2386

同被引文献44

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部