摘要
According to the rigid-viscoplasticity finite element method,the porthole die extrusion process of an aluminum harmonica-shaped tube was successfully simulated based on software Deform-3D. The distribution of stress field,effective strain field,velocity field and temperature field during the extrusion process were discussed and the metal flow in welding extrusion was analyzed. The simulation results show that the material flow velocities in the bearing exit are non-uniform with the originally designed die and the forepart of the profile is not neat or even. Aiming at solving this problem,the modification method of die structure was improved. The result shows that the uniform material flow velocities in the die exit and a perfect extruded are obtained by modification bearing length.
According to the rigid-viscoplasticity finite element method, the porthole die extrusion process of an aluminum harmonica-shaped tube was successfully simulated based on software Deform-3D. The distribution of stress field, effective strain field, velocity field and temperature field during the extrusion process were discussed and the metal flow in welding extrusion was analyzed. The simulation results show that the material flow velocities in the bearing exit are non-uniform with the originally designed die and the forepart of the profile is not neat or even. Aiming at solving this problem, the modification method of die structure was improved. The result shows that the uniform material flow velocities in the die exit and a perfect extruded are obtained by modification bearing length.
出处
《中国有色金属学会会刊:英文版》
CSCD
2007年第A01期32-36,共5页
Transactions of Nonferrous Metals Society of China
基金
Project(50674017) supported by the National Natural Science Foundation of China
关键词
舷窗
热力学
FE分析技术
铝合金
porthole die
hot extrusion
FE analysis
aluminum profile
harmonica-shaped tube