期刊文献+

一类非光滑广义分式规划的Kuhn-Tucker型最优性必要条件

Kuhn-Tucker Type Necessary Optimality Conditions for a Class of Nonsmooth Minimax Fractional Programming
下载PDF
导出
摘要 考虑一类非线性不等式约束的非光滑minimax分式规划问题;目标函数中的分子是可微函数与凸函数之和形式而分母是可微函数与凸函数之差形式,且约束函数是可微的.在Arrow- Hurwicz-Uzawa约束品性下,给出了这类规划的最优解的Kuhn-Tucker型必要条件.所得结果改进和推广了已有文献中的相应结果. In this paper, we consider a class of nonsmooth minimax fractional programming problems with nonlinear inequality constraints, where the numerator in the objective function is in the form of sum of differentiable function and convex function while the denominator is in the form of difference of a differentiable function and a convex function, and the constrained functions are differentiable. The Kuhn-Tucker type necessary optimality conditions for such class of problems are developed under the Arrow-Hurwicz-Uzawa constraint qualification. The results obtained in this paper improve and generalize some existing results in the literature.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第4期709-714,共6页 数学研究与评论(英文版)
基金 国家自然科学基金(60473097 60673177)
关键词 非光滑minimax分式规划 Kuhn—Tucker型必要条件 约束品性 nonsmooth minimax fractional programming Kuhn-Tucker type necessary conditions constraint qualification.
  • 相关文献

参考文献17

  • 1LAI H C, LEE J C. On duality theorems for a nondifferentiable minimax fractional programming [J]. J. Comput. Appl. Math., 2002, 146(1): 115-126. 被引量:1
  • 2LAI H C, LIU J C, TANAKA K. Necessary and sufficient conditions for minimax fractional programming [J]. J. Math. Anal. Appl., 1999, 230(2): 311-328. 被引量:1
  • 3SINGH A. Nondifferentiable fractional programming problems with Hanson-Mond classes of function [J]. J. Optim. Theory Appl., 1986, 49: 421-431. 被引量:1
  • 4SINGH C. Optimality conditions for fxactional minmaxprogramming [J]. J. Math. Anal. Appl., 1984, 100(2): 409-415. 被引量:1
  • 5AGGARWAL S A, SAXENA P C. A class of fractional functional programming problems [J]. New Zealand Oper. Res., 1979, 7(1): 79-90. 被引量:1
  • 6MOND B. A class of nondifferentiable mathematical programming problems [J]. J. Math. Anal. Appl., 1974, 46: 169-174. 被引量:1
  • 7LIU J C, WU C S, SHEU R L. Duality for fractional minimax programming [J]. Optimization, 1997, 41(2): 117-133. 被引量:1
  • 8LIU J C, WU C S. On minimax fraztional optimality conditions with (F, p)-convexity [J]. J. Math. Anal. Appl., 1998, 219(1): 36-51. 被引量:1
  • 9罗和治.一类广义分式规划最优性必要条件的注记[J].浙江工业大学学报,2004,32(6):660-663. 被引量:2
  • 10MANGASARIAN O L. Nonlinear Programming [M]. New York: McGraw-Hill Book Company, 1969. 被引量:1

二级参考文献13

  • 1[1] Schechter M A. Subgradient duality[J].J Math Anal Appl ,1977,61(31): 850~855 被引量:1
  • 2[2] Schechter M A. More on subgradient duality[J].J Math Anal Appl,1979 ,(2):251~262 被引量:1
  • 3[3] Tanimoto S. Duality for a class of nondifferentiable mathematical programming problems[J]. J Math Anal Appl,1981,(79):286~294 被引量:1
  • 4[4] Bector C R, Chandra S,Husain I.Optimality conditions and duality i n subdifferentiable multiobjective fractional programming[J]. J Optim Theory Appl ,1993,(79):105~125 被引量:1
  • 5[5] Lai H C, Liu J C,Tanaka K. Necessary and sufficient conditions for minimax fractional programming[J]. J Math Anal Appl,1999,(230):311~328 被引量:1
  • 6[6] Rockafellar R T.Convex Analysis[M]. New Jewsey:Princeton University Press,1972 被引量:1
  • 7Singh C. Optimality conditions for fractional minimax programming[J]. J Math AnalAppl,1984,100:409-415. 被引量:1
  • 8Mond B. A class of nondifferentiable mathematical programming problems[J]. J Math Anal Appl, 1974, 46:169-174. 被引量:1
  • 9Aggarwal S P, Saxena P C. A class of fractional functional programming problems[J]. New Zealand Oper Res, 1979,7:79-90. 被引量:1
  • 10Lai H C, Liu J C, Tanaka K. Necessary and sufficient conditions for minimax fractional programming[J]. J Math Anal Appl, 1999,230(2): 311-328. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部