摘要
对一类在Rn的开子集X上的非线性不等式约束的向量优化问题:目标函数的每个分量是可微函数与凸函数之和且约束函数是可微的,在更弱的约束品性下,给出了弱有效解的Kuhn-Tucker型必要条件。所得结果改进和推广了已有文献中的相应结果。
the Kuhn - Tucker type necessary conditions for weak efficiency are given for a class of the problem of minimizing a vector function of which each component is the sum of a differentiable function and a convex function subject to a set of differentiable nonlinear inequalities on an open subset X of R^n, under the weaker constraint qualification. The results obtained improve and extend some of the existing results in the literature.
出处
《杭州电子科技大学学报(自然科学版)》
2005年第6期90-93,共4页
Journal of Hangzhou Dianzi University:Natural Sciences
关键词
向量优化问题
必要条件
弱有效性
约束品性
vector optimization problem
necessary condition
weak efficiency
constraint qualification