期刊文献+

超机动飞行的鲁棒自适应神经网络动态面控制 被引量:2

Robust Adaptive Control of Neural Dynamic Surface for Supermaneuverable Flight
下载PDF
导出
摘要 针对超机动飞行过程中气动参数变化剧烈、控制精度高的特点,提出了一种基于神经网络的鲁棒自适应动态面控制方法.模型不确定性和外界干扰由RBF神经网络在线补偿,控制律由动态面控制方法得到,降低了反推控制器的复杂性,改进的神经网络权值调整自适应律改善了系统的过渡过程品质.利用Lyapunov稳定性定理证明了闭环系统所有信号有界,系统跟踪误差和神经网络权值估计误差指数收敛到有界紧集内.对所设计的飞行控制系统进行了Herst机动仿真,结果验证了该系统在过失速机动条件下具有良好的控制性能. An approach to neural network-based robust and adaptive dynamic surface control is proposed for supermaneuverable flight with violent changes of aero-dynamics parameters. To achieve high precision, a radical basis function neural network (RBFNN) is used to compensate for parameter uncertainties and unknown disturbance. Control laws are obtained from dynamic surface control which reduces the complexity of backstepping controller. In addition, adaptive tuning rules of neural network weights are improved to achieve good performance of transient processes. Stability analysis using the Lyapunov stability theorem shows that all closed-loop signals are bounded. Output tracking error and approximate error of neural network weights exponentially converge to small compacts. Finally, results of the Herbst maneuver simulation show that the designed control systems have good performance under stall conditions.
作者 周丽 姜长生
出处 《应用科学学报》 CAS CSCD 北大核心 2007年第6期632-638,共7页 Journal of Applied Sciences
基金 国家自然科学基金资助项目(90405011)
关键词 飞行控制 动态面控制 RBF神经网络 超机动 flight control dynamic surface control RBF neural network (RBFNN) supermaneuver
  • 相关文献

参考文献13

  • 1LI Yahui, SHENG Qiang, ZHUANG Xianyi, KANYNAK O. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks [J]. IEEE Trans Neural Networks, 2004, 15(3) : 693 - 201. 被引量:1
  • 2GE S S, WANG Cong. Adaptive neural control of uncertain MIMO nonlinear systems [J]. IEEE Trans Neural Networks, 2004, 15 (3) : 674 - 692. 被引量:1
  • 3Du Hongbin, SHAO Huihe, YAO Pingjing. Adaptive nerural network control for a class of low-triangular-structured nonlinear sysetms [J]. IEEE Trans Neural Networks, 2006, 17(2) : 509 - 514. 被引量:1
  • 4HWANG J P, KIM E. Robust traking control of an electrically driven robot: adaptive fuzzy logic approach [J]. IEEE Trans Fuzzy Syst, 2006, 14(2) : 232 - 247. 被引量:1
  • 5SHARMA M, FARRELL J A, POLYCARPOU M, RICHARDS N D, WARD D G. Backstepping flight control using on-line function approximation [ C ]//AIAA : 2003 - 5713. 被引量:1
  • 6LIAN B H, BANG H, HURTADO J E. Adaptive backstepping control based autopilot design for reentry vehicle [ C ]//AIAA: 2004 - 5328. 被引量:1
  • 7KRSTIC M, KANEEEANKOPOULOS I, KOKOTOIV P. Nonlinear and adaptive control design [M]. New York: Wiley-In-terscience Publication, 1995. 被引量:1
  • 8董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策,2006,21(10):1081-1086. 被引量:33
  • 9SWAROOP D, HEDRICK J K, YIP P P, GERDES J C. Dynamic surface control for a class of nonlinear systems [ J ]. IEEE Trans Automat Contr, 2000, 45(10) : 1893 - 1899. 被引量:1
  • 10WANG Dan, HUANG Jie. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form [J]. IEEE Trans Neural Networks, 2005, 16(1) : 195 - 202. 被引量:1

二级参考文献73

共引文献62

同被引文献31

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部