期刊文献+

超机动飞行的非线性鲁棒自适应控制系统研究 被引量:12

Research on robust and adaptive nonlinear control system of supermaneuverable fight
下载PDF
导出
摘要 针对飞机模型中存在气动参数不确定性以及外界干扰等影响因素,设计了一种超机动飞行的非线性鲁棒自适应控制系统。控制系统设计过程中,模型不确定性和外界干扰由RBF神经网络在线补偿,控制律及神经网络权值自适应律由反步法得到。解决了系统中控制增益矩阵未知,同时存在外界干扰情况下的鲁棒飞行控制系统设计,并证明了闭环系统所有信号有界,系统跟踪误差和神经网络权值估计误差指数收敛到有界紧集内。对所研究的飞行控制系统进行了过失速Herbst机动仿真,结果验证了该系统在过失速机动条件下具有良好的控制性能。 A robust and adaptive flight control system is designed for a nonlinear aircraft model with parameter uncertainties and unknown disturbance. During the design of control system, parameter uncertainties and disturbance are compensated for online by RBF neural networks. Control law and adaptive laws of neural networks are achieved through backstepping method. As a result, the design problem of robust flight control system is resolved under the condition of unknown control gain matrix and disturbance. It is proved that all signals in the closed-loop system are bounded. Moreover, tracking error of the system and estimation error of neural networks' weights are remained in the compact sets. Herbst maneuver simulation results demonstrate that the designed control system has good oerformance under conditions of stall.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第4期710-714,共5页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(90405011)
关键词 飞行控制系统 干扰抑制 反步法 RBF神经网络 超机动 flight control system disturbance rejection backstepping RBFNN supermaneuver
  • 相关文献

参考文献13

  • 1董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策,2006,21(10):1081-1086. 被引量:33
  • 2Li Y, Qiang S, Zhuang X, et al. Robust and adaptive backstep ping control for nonlinear systems using RBF neural networks[J]. IEEE Trans. Neural Networks, 2004, 15 (3) : 693 - 201. 被引量:1
  • 3Du H, Shao H, Yao, P. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Trans, Neural Networks, 2006, 17(2): 509-514. 被引量:1
  • 4Ding Z. Universal disturbance rejection for nonlinear systems in output feedback form [J]. IEEE Trans. Automat. Contr. , 2003, 48 (7): 1222-1227. 被引量:1
  • 5Du H, Shao H, Yao P. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Trans. Neural Networks, 2006, 17 (2):509-514. 被引量:1
  • 6Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems[J]. IEEE Trans. Neural Networks, 2004, 15(3):674-692. 被引量:1
  • 7Ge S S, Zhang J, Lee T H. Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete- Time[J]. IEEE Trans. Syst., Man, Cybern, 2004, 34 (4): 1630 - 1645. 被引量:1
  • 8Chen, Liu X B, Tong S. Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems[J]. IEEE Trans. Fuzzy Syst. , 2007, 15 (2), 287-299. 被引量:1
  • 9胡云安,晋玉强,张友安,崔平远.基于神经网络的严反馈块非线性系统的鲁棒控制[J].控制与决策,2004,19(7):808-812. 被引量:14
  • 10胡云安,晋玉强,崔平远.带有广义不确定性的导弹非线性控制系统设计[J].航空学报,2004,25(2):153-157. 被引量:5

二级参考文献82

共引文献71

同被引文献117

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部