摘要
研究一类受扰奇异摄动时滞组合大系统的近似最优控制问题.基于奇异摄动的快慢分解理论,将原组合大系统的最优控制问题分解为组合线性快优化子问题和降阶的受扰时滞组合慢优化子问题.通过采用前馈补偿方法抑制外部扰动,采用参数摄动法求解组合慢优化子问题,得到了系统的前馈反馈组合(FFCC)控制律.通过引入降维扰动观测器解决了FFCC律的物理可实现问题.仿真算例验证了所提出方法的有效性.
The optimal control problem for a class of singularly perturbed time-delay composite systems affected by external disturbances is considered. Based on the theory of singular perturbation decomposition, the original optimal control problem is decomposed into a fast optimal sub-problem of the linear composite system and a slow optimal one of the composite time-delay system with disturbances. By using the feedforward compensation method to reject the external disturbances, and the parameter perturbation approach to solve the reduced slow optimal problem, the feedforward and feedback composite control (FFCC) law of the original system is obtained. A reduced-order disturbance observer is introduced to make the FFCC law physically realizable. A numerical example shows the effectiveness of the proposed algorithm.
出处
《控制与决策》
EI
CSCD
北大核心
2007年第11期1245-1249,1254,共6页
Control and Decision
基金
国家自然科学基金项目(60574023)
浙江省教育厅科研项目(Y200702660)
中国计量学院123人才计划项目(2006RC17)
关键词
奇异摄动系统
时滞
最优控制
参数摄动法
外系统
Singularly perturbed systems
Time-delay
Optimal control
Parameter perturbation approach, Exosystem