期刊文献+

移动机器人故障分类及处理方法的研究

A Multi-CMAC Neural Network Based Fault Classification and Treatment Method for Mobile Robots
下载PDF
导出
摘要 移动机器人系统由多个功能模块组成,每个功能模块实现不同的功能。本文根据各模块之间传感器信息的连贯性,定义了一种故障分类方法,将移动机器人的故障分为系统故障、传感器故障和混合故障三类。依据该分类方法提出了一种基于多个CMAC神经网络的故障诊断处理方法。该故障诊断方法的基本思想是将处理后的各模块组的传感器信息作为神经网络的输入,故障类型作为输出,利用CMAC神经网络完成各模块组的故障诊断过程。最后,仿真实验的结果证明了该故障诊断方法在移动机器人故障诊断上的可行性。 Mobile robot system consists of several functional modules. According to the consistency of the sensor information between the neighbour modules, a method of classifying the faults was put forword. All the faults are classified into system fault, sensor fault and combined fault. A muhi-CMAC neural network based fault diagnosis method was described. In this method, the sensor information work as the inputs and the fault types as the outputs, then the CMAC neural network are used to finish the process of fault diagnosis. The simulation results show the effectiveness of the proposed technique.
出处 《机床与液压》 北大核心 2007年第11期169-173,共5页 Machine Tool & Hydraulics
基金 国防科技预研基金资助(00J16.6.3.JW0401)
关键词 故障分类 故障诊断 功能模块 移动机器人 CMAC神经网络 Fault classification Fault detection and diagnosis Functional module Mobile robot CMAC neural network
  • 相关文献

参考文献9

  • 1段琢华,蔡自兴,于金霞.未知环境中移动机器人故障诊断与容错控制技术综述[J].机器人,2005,27(4):373-379. 被引量:16
  • 2V Verrma, G Gordon, R Simmons, et al. Real-time fault diagnosis robot fault diagnosis [J]. IEEE Robotics & Automation Magazine, 2004, 11 (2) : 56-66. 被引量:1
  • 3K. Kawabata, S. Okina, et al. A Study of Self-diagnosis System for an Autonomous Mobile Robot: Coping with Self-condition Using Internal Sensory Information [ C ]. The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001 : 381 - 386. 被引量:1
  • 4Okina, K. Kawabata, et al. Self-diagnosis System of an Autonomous Mobile Robots Using Sensory Information [J]. Journal of Robotics and Mechatronics, 2000, 12 (2) : 72 -77. 被引量:1
  • 5H. Asama, M. Sato, et al. Development of Omni-Directional Mobile Robot with 3 DOF Decoupling Drive Mechanism [J]. Proceedings of International Conference on Robotics and Automation, 1995, 2:1925-1930. 被引量:1
  • 6W. T. Miller, F. H. Glanz, L G. Kraft. CMAC: an associative neural network alternative to backpropagation [J]. IEEE Proc. , 1990, 78:1561-1567. 被引量:1
  • 7孙增圻等编著..智能控制理论与技术[M].北京:清华大学出版社;南宁,1997:373.
  • 8Chin-Min Lin, Yu-Ju Liu. Fault Accommodation for Nonlinear Systems Using Cerebellar Model Articulation Controller [J]. Neural Networks, 2004 IEEE Proceedings, 2004, 2 : 879 - 883. 被引量:1
  • 9C. T. Chiang, C.S. Lin. CMAC with General Basis Functions [J]. IEEE Trans. Neural Networks, 1996, 9: 1199 - 1211. 被引量:1

二级参考文献25

  • 1Verma V, Gordon G, Simmons R, et al. Real-time fault diagnosis robot fault diagnosis [ J ]. IEEE Robotics & Automation Magazine,2004, 11(2): 56 -66. 被引量:1
  • 2Frank P M. Analytical and qualitative model-based fault diagnosis - a survey and some new results[ J]. European Journal of Control, 1996,2(1): 6-28. 被引量:1
  • 3de Kleer J, Williams B C. Diagnosing multiple faults[J]. Artificial Intelligence, 1987, 32(1): 97-130. 被引量:1
  • 4Carlson J, Murphy R R. Reliability analysis of mobile robots[A].Proceedings of the IEEE International Conference on Robotics and Automation[ C]. USA: IEEE, 2003, vol. 1. 274 -281. 被引量:1
  • 5Carlson J, Murphy R R, Nelson A. Follow-up analysis of mobile robot failures[ A]. Proceedings of the IEEE International Conference on Robotics and Automation[ C ]. USA: IEEE, 2004. 4987 - 4994. 被引量:1
  • 6Umesh B N. A Fault Diagnostic System for an Unmanned Autonomous Mobile Robot[ D]. USA: University of Cincinnati, 1997. 被引量:1
  • 7Roumeliotis S I, Sukhatme G S, Bekey G A. Sensor fault detection and identification in a mobile robot[ A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[ C ].USA: IEEE, 1998, vol. 3. 1383-1388. 被引量:1
  • 8Goel P, Dedeoglu G, Roumeliotis S I, et al. Fault detection and identification in a mobile robot using multiple model estimation and neural network [ A ]. Proceedings of the IEEE International Conference on Robotics and Automation [ C ]. USA: IEEE, 2000, vol. 3.2302 - 2309. 被引量:1
  • 9Hashimoto M, Kawashima H, Nakagami T, et al. Sensor fault detection and identification in dead-reckoning system of mobile robot:interacting multiple model approach [ A ]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems [ C ].USA: IEEE, 2001, vol. 3. 1321 - 1326. 被引量:1
  • 10Hashimoto M, Kawashima H, Oba F. A multi-model based fault detection and diagnosis of internal sensor for mobile robot[ A]. Proceedings of the IEEE International Conference on Intelligent Robots and Systems[C]. USA: IEEE, 2003, vol. 4. 3787 -3792. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部