期刊文献+

独立成分分析和支持向量机混合方法在过程监控中的应用 被引量:2

Application of a hybrid method in process monitor with independent component analysis and support vector machine
原文传递
导出
摘要 为克服传统过程监控方法需假设过程特征信号服从多元正态分布的缺陷,本文提出了一种将独立成分分析(ICA)与支持向量机结合的故障诊断方法。通过建立独立成分模型确定相应的统计量界限,筛选出需进一步检测的故障数据,再由支持向量机进行故障识别。将该方法用于化工聚合反应的过程监控与故障诊断中,仿真结果表明,这种混合故障诊断方法通过适当地调节统计量控制界限,不仅能够正确识别故障,而且能够纠正由误检数据引起的误报,提高故障诊断的准确率。 In order to overcome the shortcoming of the conventional process monitoring method's assumption that the extracted features must be subject to multivariate normal distribution, a novel method of fault diagnosis combining with Independent Component Analysis (ICA) and Support Vector Machines (SVM) is presented. The fault data detected is determined by the bound of correspensive statistic in the Independent Component Model firstly, then the failure category is identified by Support Vector Machines (SVM). This hybrid method is applied to a system of process monitor and fault analysis for a chemical polymerization reaction process. The simulation result shows that the hybrid method of ICA and SVM not only can make accurate fault recognition, but also rectify the false alarms proceeded from the mistaken data by adjusting the control bound of process statistics. Therefore, this hybrid method can increase the accuracy of fault diagnosis.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2007年第3期295-298,共4页 Computers and Applied Chemistry
基金 国家自然科学基金(60674092) 国家高技术研究发展计划(863计划)(2002AA412120)
关键词 独立成分分析 支持向量机 故障诊断 聚合反应 independent component analysis ( ICA), support vector machines ( SVM), fault diagnosis, polymerization reaction
  • 相关文献

参考文献3

二级参考文献33

  • 1邸丽清,张杰,阳宪惠.MWMPCA方法及其在间歇过程监控中的应用[J].吉林大学学报(信息科学版),2004,22(4):397-400. 被引量:8
  • 2王俊锋 钱宇 李秀喜 胡跃明.数据挖掘在化工过程监控与故障诊断中的应用[J].计算机与应用化学,2001,18(10):230-233. 被引量:3
  • 3Golub TR, Slonim D, Tamayo P, Huard C, Gaasenbeed M, Mesirov J, Coller H, I,oh M, Downing J, Caligiuri MA, Bloomfield CD and Lander ES. Molecular classification of cancer: class discovery and class p~.dietion by gene expression monitoring. Science, 1999, 286:531 -537. 被引量:1
  • 4A|on U, Barkai N, Notterman DA, Gish K, Ybarm S, Mack D and Levine AJ. Breed patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Pine Natl Aead Sci USA. 1999. 96:6745-6750. 被引量:1
  • 5Alizadeh AA, Eisen MB and Davis RE, et al. Distinct types of diffuse large Bcell lymphoma identified by gene expression profiling. Nature, 2000,403:503 -511. 被引量:1
  • 6Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarrav Eene expression data. Bioinformatics. 2002,18:39 -50. 被引量:1
  • 7Francesca Chiaromonte, Jessica Martinelli. Dimension reduction strategies for analyzing global gene expression data with a response. Mathematical Biosciences. 2002, 176:123 - 144. 被引量:1
  • 8Ramsay R. DNA chips: State-of-the-art. Nature Biotechnology, 1998, 16:40- 44. 被引量:1
  • 9Marshall A and Hodgson J. DNA chips: An array of posslbililies. Nature Biotechnology, 1998, 16:2731. 被引量:1
  • 10McGall GH, Bamne AD and Diggelmann M, et al. The efficiency of fight-directed synthesis of DNA arrays on glass subsla-ates. J Am Chem Soc, 1997,119(22) :5050 -5081. 被引量:1

共引文献19

同被引文献7

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部