期刊文献+

图像压缩中的顺序组合最优匹配小波

Application of order compose of most superior match wavelet in image compression
下载PDF
导出
摘要 小波变换是图像压缩中的一个重要工具。二维图像在进行压缩变换时,因变换后系数需要进行截短,以及小波与图像可能不是最优匹配,因此使得重构后的图像能量损失较大。为了减少重构后图像能量损失,本文提出了顺序组合最优匹配小波构造方法;通过Woman图像,构造该图像的顺序组合最优匹配小波,并用该小波对其图像进行处理,最后与其他一些方法进行比较处理结果。 The wavelet transformation is an important tool in image compression . When an two-dimensional image carries on the compression transformation, after the transformation the coefficient must be shortened, as well as the wavelet and the image are not possibly the most superior matches, so this causes the image energy of restructuring to lose in a big way. In order to reduce the image energy of restructuring, this article proposes the method of the order compose of most superior match wavelet; Through the Woman image, the image of order compose of most superior match wavelet is structured and processed by the wavelet, and finally the processing result is compared with other methods.
出处 《微计算机信息》 北大核心 2007年第33期301-303,共3页 Control & Automation
基金 国家自然科学基金项目(10361003) 广西自然科学基金(0542046) 广西区研究生创新基金项目
关键词 顺序组合 最优匹配 构造小波 图像压缩 order compose, most superior match, wavelet structure, image compression
  • 相关文献

参考文献9

  • 1成礼智等.小波的理论与应用[M].科学出版社,2005. 被引量:1
  • 2孙延奎编著..小波分析及其应用[M].北京:机械工业出版社,2005:285.
  • 3David.B.H.Tay. Rationalizing.the coeffic Ients of popular biorthogonal wavelet filters.IEEE Trans on Circuits and System for Video Technology,2000,10(6):998. 被引量:1
  • 4I.Daubechies, Orthonormal bases of compactly supported wave-lets,Commun. pure and Applied Maths, vol.41,p.909,996,1988. 被引量:1
  • 5Martin Vetterli. Wavelets and Filter Banks: Theory and Design, Signal procession.Vol.41(9):1992. 被引量:1
  • 6丁爱玲,石光明,郑春红,焦李成.最优匹配小波的构造[J].自然科学进展,2004,14(12):1469-1474. 被引量:5
  • 7王鹏飞,李著信,范文峰.基于改进型小波基的图像压缩方法研究[J].微计算机信息,2005,21(10X):97-99. 被引量:10
  • 8Malllet S,et al. Matching pursuits with time-frequency dictionaries. IEEE Trans on Signal Processing,1993,41(12). 被引量:1
  • 9Aldroubi A ,et al.Families of muhiresolution and wavelet spaces with optimal properties.Number Func Anal Optim, 1993, 14(5). 被引量:1

二级参考文献15

  • 1Mallat S, et al. Signularity detection and processing with wavelets. IEEE Trans Information Theory, 1992, 38 (3):617 被引量:1
  • 2Mallat S, et al. A theory for multiresolution signal decomposition:The wavelet representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674 被引量:1
  • 3Gopinath R A, et al. Optimal wavelet representation of signals and wavelet sampling theorem. IEEE Trans Circuits Systems II, 1994, 41(4): 262 被引量:1
  • 4Cohen A, et al. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1992,45(5): 485 被引量:1
  • 5Mallat S, et al. Matching pursuits with time-frequency dictionaries. IEEE Trans on Signal Processing, 1993, 41(12): 3397 被引量:1
  • 6Krim H, et al. On denoising and best signal representation. IEEE Trans on Information Theory, 1999, 45(7):2225 被引量:1
  • 7Aldroubi A, et al. Families of multiresolution and wavelet spaces with optimal properties. Numer Func Anal Optim, 1993, 14(5):417 被引量:1
  • 8Chapa J O, et al. Algorithm for designing wavelets to match a specified signal. IEEE Trans On Signal Processing, 2000, 48(12): 3395 被引量:1
  • 9Aleksandra M, et al. On the selection of an optimal wavelet basis for texture characterization. IEEE Trans On Image Processing, 2000,19(12):2043 被引量:1
  • 10Chan S C, et al. M-channel compactly supported biorthogonal cosine-modulated wavelet bases. IEEE Trans on Signal Processing, 1998, 46(4):1142 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部