期刊文献+

乳腺钼靶X线影像中结构扭曲检测技术研究的进展 被引量:3

Advances in the diagnostic technogues of architectural distortion in mammograms
原文传递
导出
摘要 乳腺癌是全球女性发病率最高的恶性肿瘤,通过筛查实现早期发现、早期诊断和早期治疗对降低乳腺癌死亡率至关重要。乳腺钼靶X线摄影术是目前最普遍适用的乳腺癌筛查方法。有效检测乳腺钼靶X线影像中的结构扭曲病灶有利于提高筛查的质量和效率。就目前乳腺钼靶X线影像中结构扭曲检测技术的研究现状、存在的问题和发展趋势进行了综述。 Breast cancer is the most frequently diagnosed cancer and leading cause of cancer death among women in the world. Early diagnosis and treatment is the most effective way to reduce the mortality and a screening program based on mammograms is currently the best way for early detection of breast cancer. Effectively detecting architectural distortion in mammograms can improve the quality and efficiency of screening. This paper reviews the present status and prospects of research on the detecting architecture distortion in mammograms.
作者 龚著琳 章鲁
出处 《国际生物医学工程杂志》 CAS 2007年第5期265-269,共5页 International Journal of Biomedical Engineering
基金 上海市教委科研基金资助项目(04BB11) 上海市教委E-网格研究院项目基金资助项目(200304)
关键词 乳腺癌 结构扭曲 乳腺钼靶x线影像 breast cancer architecture distortion mammograms
  • 相关文献

参考文献20

  • 1Mendez AJ, Souto M, Tahoces PG, et al. Computer-aided diagnosis for breast masses detection on a telemammography system[J].Comput Med Imag Graphics, 2003, 27(6): 497-502. 被引量:1
  • 2American College of Radiology (ACR). Breast imaging reporting and data system (BI-RADS) [ M ]. Third Edition. Reston [VA ] Am College of Radiol, 1998: 200-215. 被引量:1
  • 3Burgess AE. Comparison of receiver operating characteristic and forced choice observer performance measurement method [J]. Med Phys, 1995, 22: 643-645. 被引量:1
  • 4Tourassi GD, Ehonsy NH, Elmaghraby AS, et al. Detection of architectural distortion in mammograms using fractal analysis [ A ]. In: Fitzpatrick JM, eds. Medical Imaging: Image Processing [ C]. Milan: Sonka, 2005. 5747: 930-938. 被引量:1
  • 5Wei CH, Li CT, Wilson R. A general framework for content-based medical image retrieval with its application to mammograms [A]. Ratib OM, Horii SC, eds. Medical Imaging: PACS and Imaging Informatics [ C ]. Milan: Sonka, 2005. 5748: 134-143. 被引量:1
  • 6Chang T, Kuo CCJ. Texture analysis and classification with tree-structured wavelet transform[J]. IEEE Trans Image Proc, 1993, 2(4): 429-441. 被引量:1
  • 7Ferrari R J, Rangayyan RM, Desautels JEL, et al. Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets [J ]. Trans Med Imag, 2001, 20(9): 953-963. 被引量:1
  • 8Mudigonda NR, Rangayyan RM. Texture flow-field analysis for the detection of architectural distortion in mammograms [ A ]. In: Proc of Biovisionvision [ C ]. Bangalore: India, 2001.76-81. 被引量:1
  • 9Lu SJ, Bottema MJ. Structural image texture and early detection of breast cancer[A]. In: Proceedings of the 2003 APRS Workshop on Digital Image Computing[ C ]. Brisbane: Austrdja, 2003.15-20. 被引量:1
  • 10Guo Q, Shao J, Ruiz V. Investigation of support vector machine for the detection of architectural distortion in mammographic images [A]. In: Journal of Physics: Conference Series 15 [C]. Instit of Phys Pub, 2005.88-94. 被引量:1

同被引文献11

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部