期刊文献+

乳腺钼靶X线影像中结构扭曲的特征提取研究 被引量:1

Features Extraction of Architectural Distortion in Mammograms
下载PDF
导出
摘要 本研究以灰度共生矩阵描述乳腺钼靶X线影像中结构扭曲的纹理特征。对学习样本(乳腺结构扭曲样本44个,正常样本78个),计算五个反映纹理性质的特征参数,根据相应的Fisher系数,确定最适合作为分类依据的特征参数或特征参数组合。用线性判别分析对测试样本(乳腺结构扭曲样本43个,正常样本78个)进行分类。分类结果表明本研究确定的纹理特征熵(ENT)是识别乳腺结构扭曲的最佳统计参数(分类正确率达78.5%、ROC曲线下的面积为0.786)。 The gray-level co-occurrence matrix was employed to describe the texture features of architectural distortion in mammograms. Based on a training dataset composed of 44 architectural distortions and 78 normal mammograms, 5 parameters were calculated and analyzed to represent the texture features. The best features for classification were determined according to the corresponding Fisher indices of these parameters. A linear model was designed to classify a test dataset composed of 43 architectural distortions and 78 normal mammograms with the features determined above. The test results showed that the feature entropy (ENT) was selected as the best parameter to detect breast architectural distortion with an accuracy of 78.5 %, and the area under the ROC curve was 0.786.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2007年第4期503-507,共5页 Chinese Journal of Biomedical Engineering
基金 上海市教委科研基金(04BB11) 上海市教委E-网格研究院项目基金(200304)。
关键词 结构扭曲 纹理特征 Fisher系数 乳腺钼靶X线影像 architecture distortion texture feature Fisher index mammograms
  • 相关文献

参考文献9

  • 1Méndez AJ,Souto M,Tahoces PG,et al.Computer-aided diagnosis for breast masses detection on a telemammography system[J].Computerized Medical Imaging and Graphics,2003,27(6):497-502. 被引量:1
  • 2Leichter I,Fields S,Nirel R,et al.Improved mammographic interpretation of masses using computer-aided diagnosis[J].Eur Radiol,2000,10(2):377-383. 被引量:1
  • 3Baker JA,Rosen EL,Lo JY,et al.Computer-aided detection (CAD) in screening mammography:Sensitivity of commercial CAD systems for detecting architectural distortion[J].American Journal of Roentgenology,2003,181:1083-1088. 被引量:1
  • 4Ichikawa T,Matsubara T,Hara T,et al.Automated detection method for architectural distortion areas on mammograms based on morphological processing and surface analysis[A].In:Fitzpatrick JM,eds.Medical Imaging:Image Processing[C].Milan:Sonka,2004.5370:920-925. 被引量:1
  • 5Ayres FJ,Rangayyan RM.Characterization of architectural distortion in mammograms[J].IEEE Engineering in Medicine and Biology Magazine 2005,24:59-67. 被引量:1
  • 6American College of Radiology (ACR).Breast Imaging Reporting And Data System (BI-RADS)[M].(3rd Edition).Reston VA:American College of Radiology,1998. 被引量:1
  • 7Haralick RM,Shanmugan K,Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems,Man and Cybernetics,1973,3(6):610-621. 被引量:1
  • 8Shaw AD,Camillo AD,Vlahov G,et al.Discrimination of the Variety and Region of Origin of Extra Virgin Olive Oils using 13C NMR and Multivariate Calibration with Variable Reduction[J].Analytica Chimica Acta,1997,348:1 -3,357-374. 被引量:1
  • 9Duda RO,Hart PE,Stork DG.Pattern Classification[M].(2nd Edition).New York:Wiley Interscience,2001. 被引量:1

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部