期刊文献+

一类(α+1,3)型的距离正则图 被引量:1

A Class of Distance-regular Graph With Order (α+1,3)
下载PDF
导出
摘要 设Γ是直径为d且型为(α+1,3)的距离正则图,其中α≥2.用l(c,a,b)表示交叉阵列l(Γ)中列(c,a,b)^t的个数,记r=r(Γ)=l(c1,a1,b1),s=s(Γ)=l(c(r+1),a(r+1),b(r+1)).那末,若c(r+1)=3且a(r+1)=3a,则d=r+s+1,cd=4且Γ为正则拟2d边形. Let F be a distance-regular graph with order (α + 1,3), where α≥ 2, and let l(c, α, b) denote the number of columns (c, α, b)^t in intersection array l(F). Write r = r(Γ) = l(c1, a1, b1) and s = s(Γ) = l(cr+1, αr+1, br+1). If cr+1 = 3 and αr+l = 3α, then d = r+ s + 1, Cd = 4 and F is a regular near 2d-gon.
出处 《数学进展》 CSCD 北大核心 2007年第5期574-578,共5页 Advances in Mathematics(China)
基金 河北省自然科学基金(No.A20005000141)
关键词 距离正则图 交叉表 正则拟多边形 distance-regular graphs intersection diagram clique regular near polygon
  • 相关文献

参考文献8

  • 1Bannai, E. and Ito, T., Algebraic Combinatorics I, California: Benjamin-Cummings, 1984. 被引量:1
  • 2Biggs, N.L., Boshier, A.G. and Shawe-Taylor, J., Cubic distance-regular graphs, J. London Math. Soc. II, 1986, 33: 385-394. 被引量:1
  • 3Boshier, A. and Nomura, K., A remark on the intercection array of distance-regular graphs, J. Combin. Theory, Set. B., 1998, 44:147-153. 被引量:1
  • 4Brouwer, A.E., Cohen, A.M. and Neumaier A., Distance-regular Graphs, Berlin, Heidelberg: Springer Verlag, 1989. 被引量:1
  • 5Hiraki, A., A circuit chasing technique in distance-regular graphs, Europ. J. Combin., 1993, 14:413-420. 被引量:1
  • 6Hiraki, A., Nomura, K. and Suzuki, H., Distance-regular graphs of valency 6 and a1 = 1, J. Alg. Combin., 2000, 11: 101-134. 被引量:1
  • 7Mohar, B. and Shawe-Taylor, J., Distance-biregular graphs with 2-valent vertices and distance-biregular line graphs, J. Combin. Theory, Ser. B., 1985, 38: 193-203. 被引量:1
  • 8Yamazaki,N., Distance-regular graphs with Г(x)≈ 3 * Ka+1, Europ. J. Combin., 1995, 16: 525-536. 被引量:1

同被引文献5

  • 1BANNAI E, ITO T. Algebraic Combinatorics I [ M]. California: Benjamin, 1984. 被引量:1
  • 2BIGGS N L. Algebraic Graph Theory, Cambridge Tracts in Math 67 [ M]. Cambridge: Cambridge Univ Press, 1974. 被引量:1
  • 3BROUWER A E, COHEN A M, NEUNAIER A. Distance-regular Graphs [ M]. Berlin: Springer-verlag, 1989. 被引量:1
  • 4GODSIL C D. Algebraic Combinatorics [ M]. New York:Chapman and Hall, 1993. 被引量:1
  • 5HIRAKI A, KOOLEN J. The Regular Near Polygons of Order(s,2) [ J ]. J Alg Combin, 2004,20:219-235. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部