摘要
研究了压电元件的非线性及其复合控制问题。依据压电元件全程及局部伸长和缩短的实验数据,提出了一种根据外环曲线参数及当前坐标值确定比例系数,进而确定内环伸长曲线的数学模型。实验表明,这种全面反映内、外环曲线的非线性数学模型对上升和下降过程的最大拟合误差在全程范围内分别为1.2%和2.0%。利用此模型,可在压电元件非线性外环曲线及目前电压-伸长量已知的情况下,求出其下一时刻上升或下降的路径。以此模型为基础,构造了一种压电元件前馈复合控制算法,在输入峰-峰值为4μm位移的情况下,得到了280 Hz的闭环带宽。同普通PID控制算法相比,带宽提高了30%以上。
A new nonlinear mathematical model descripting the comparability between minor loop curves and mean loop curves of the PZT actuator was establised. With the model, the minor loop curves can be expressed by multiplying each point while the mean loop curves by a sequential factor. The maximum relatively errors of the model are 1. 2% in ascending curves and 2% in descending curves respectively. A new PID complex control arithmetic to the PZT actuator was setup referencing feed-forward loop. The experimental results show that 280 Hz closed loop bandwidth is available with 4 μm peak-to-peak input,and the band width is 30% wider than that of a general PID feedback control arithmetic.
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2007年第10期1547-1552,共6页
Optics and Precision Engineering
基金
国家自然科学基金资助项目(No.60474055)
吉林省杰出青年基金资助项目(No.20060115)