期刊文献+

对偶L_p-质心体与Fourier变换 被引量:2

Dual L_p-Centroid Bodies and the Fourier Transform
原文传递
导出
摘要 对p>0,Lutwak,Yang和Zhang引进了R^n中一个凸体K的对偶L_p^-质心体Γ_(-p)K.本文研究Γ_(-p)KΓ_(-p)L是否必定蕴涵vol_n(K)≤vol_n(L)的问题.我们的结果是Lutwak(p=1的情形)及Grinberg和Zhang(p>1的情形)关于L_(p^-)质心体算子Γ_p的类似问题的结果的对偶形式. For p 〉 0, Lutwak, Yang and Zhang introduced a star body Г-pK of a convex body K. In this paper we consider the question of whether Г-pK ∪→ Г-pL implies voln(K) 〈 voln(L). Our results are dual forms for the studies of Гp by Lutwak in the case p = 1 and by Grinberg and Zhang in the case p 〉 1.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第6期1419-1424,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10671117)
关键词 凸体 对偶p-质心体 嵌入到Lp FOURIER变换 convex body dual p-centroid body embedding in Lp Fourier transform
  • 相关文献

参考文献13

  • 1Lutwak E., Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 1990, 60(3): 365-391. 被引量:1
  • 2Grinberg E., Zhang G., Convolutions, transforms and convex bodies, Proc. London Math. Soc., 1999, 78: 77-115. 被引量:1
  • 3Lutwak E., Yang D., Zhang G., A new ellipsoid associated with convex bodies, Duke Math. J., 2000, 104: 375-390. 被引量:1
  • 4Lutwak E., Yang D., Zhang G., Lp John ellipsoids, Proc. London Math. Soc., 2005, 90: 497-520. 被引量:1
  • 5Wang W. D., Leng G. S., On some inequalities for the new geometric body Γ-p, Acta Mathematica Sinica, Chinese Series, 2006, 49(6): 1327-1334. 被引量:1
  • 6Firey W. J., p-means of convex bodies, Math. Scand., 1962, 10: 17-24. 被引量:1
  • 7Lutwak E., The Brunn-Minkowski-Firey Theory I: Mixed volumes and the Minkowski Problem, J. Differential Geom., 1993, 38: 131-150. 被引量:1
  • 8Lutwak E., The Brunn-Minkowski-Firey Theory Ⅱ: Affine and geominimal surface areas, Adv. Math., 1996, 118: 244-294. 被引量:1
  • 9Koldobsky A., Fourier analysis in convex geometry, Mathematical Surveys and Monographs, American Mathematical Society, Providence RI, 2005. 被引量:1
  • 10Koldobsky A., Ryabogin D., Zvavitch A., Projections of convex bodies and the Fourier transform, Israel J. Math., 2004, 139: 361-380. 被引量:1

同被引文献27

  • 1王卫东,冷岗松.关于新几何体Γ_(-p)K的几个不等式[J].数学学报(中文版),2006,49(6):1327-1334. 被引量:2
  • 2GARDNER R J, GIANNOPOULOS A A. p-crosssection bodies[J]. Indiana Univ Math J, 1999,48 (2):593--613. 被引量:1
  • 3GARDNER R J, ZHANG G. Affine inequalities and radial mean bodies[J]. American J of Mathematics, 1998,120(3) : 505 - 528. 被引量:1
  • 4KOLDOBSKY A. Fourier analysis in convex geometry [C]//Mathematical Surveys and Monographs. Providence: American Mathematical Society, 2005,116 : 27. 被引量:1
  • 5HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1959:64--94. 被引量:1
  • 6MARTINI H. Extremal equalities for cross-sectional measures of convex bodies [ C]//Proe 3rd Geometry Congress ( thessaloniki 1991 ). Thessaloniki: Aristoteles Univ Press,1992:285-296. 被引量:1
  • 7LUTWAK E. Dual mixed volumes[J]. Pacific J Math, 1975,58(2) :531-538. 被引量:1
  • 8GARDNER R J. Geometric Tomography[M]. 2nd Ed, Cambridge: Camgridge University Press, 2006 : 308. 被引量:1
  • 9BUSEMANN H. A theorem on convex bodies of the Brunn-Minkowski type[J]. Proe Nat Aead Sci, 1949,35 (1) :27--31. 被引量:1
  • 10LEICHTWEIβK.Affine Geometry of Convex Bodies[M].Heidelberg:J A Barth,1998. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部