期刊文献+

基于量子行为的微粒群优化算法的数据聚类 被引量:2

Data clustering using quantum-behaved particle swarm optimization
下载PDF
导出
摘要 在PSO聚类算法的基础上,提出了基于量子行为的微粒群优化算法(QPSO)的数据聚类。QPSO算法不仅参数个数少、随机性强,并且能覆盖所有解空间,保证算法的全局收敛。PSO与QPSO算法的不同在于聚类中心的进化上,实验中用到四个数据集比较的结果,证明了QPSO优于PSO聚类方法。在聚类过程中使用了一种新的度量代替Euclidean标准,实验证明了新的度量方法比Euclidean标准更具有健壮性,聚类的结果更精确。 A data clustering using quantum-behaved particle swarm optimization (QPSO) based on PSO clustering was proposed. Not only parameters of QPSO is few and randomicity of QPSO is strong, but also QPSO cover with all solution space and guarantees global convergence of algorithms. The difference between PSO and QPSO is the evolution of the cluster centroids. The performance of the clustering method on four data sets were compared. The experiment results show QPSO clustering superiority. A new metric was used to replace the Euclidean norm in clustering procedures. Experiment results show that this new metric is more robust and accuracy than common-used Euclidean norm.
出处 《计算机应用研究》 CSCD 北大核心 2007年第11期49-51,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60474030)
关键词 聚类 基于量子行为的微粒群优化算法 新的度量 clustering QPSO algorithm new metric
  • 相关文献

参考文献14

  • 1KUO L W,MIIN-SHEN Y.Alternative c-means clustering algorithms[J].Pattern Recognition,2002,35:2267-2278. 被引量:1
  • 2SUN Jun,XU Wen-bo.A global search strategy of quantum-behaved particle swarm optimization[C]//Proc of IEEE Conference on Cybernetics and Intelligent Systems.2004:111-116. 被引量:1
  • 3SUN Jun,FENG Bin,XU Wen-bo.Particle swarm optimization with particles having quantum behavior[C]//Proc of Congress on Evolutionary Computation.2004:325-331. 被引量:1
  • 4曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 5RAMOS V,MUGE F.Image colour segmentation by genetic algorithms[C]//Proc of the 11th Portuguese Conference on Pattern Recognition.Porto,Portugal:[s.n.],2000. 被引量:1
  • 6郭国栋,马颂德.彩色图象分割[J].中国图象图形学报(A辑),1998,3(11):918-921. 被引量:13
  • 7OHLANDER R,PRICE K,REDDY D R.Picture segmentation using a recursive region splitting method[J].CGIP,1978,8(3):313-333. 被引量:1
  • 8TREMEAU A,BOREL N.A region growing and merging algorithm to color segmentation[J].Pattern Recognition,1997,30(7):1191-1203. 被引量:1
  • 9PAL N R,PAL S K.A review on image segmentation techniques[J].Pattern Recognition,1993,26(9):1277-1294. 被引量:1
  • 10ADAMS R,BISCHOF L.Seeded region growing[J].IEEE-PAMI,1994,16(6):641-646. 被引量:1

二级参考文献3

共引文献14

同被引文献20

  • 1刘韬,殷锋,陈建英,何蔚林.基于量子行为的粒子群优化算法分类规则获取[J].计算机应用研究,2009,26(2):496-499. 被引量:1
  • 2龙海侠,须文波,孙俊.基于QPSO的数据聚类[J].计算机应用研究,2006,23(12):40-42. 被引量:14
  • 3孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011. 被引量:19
  • 4BASAVARAJU M, PRABHAKAR R.A novel method of spam mail detection using text based clustering approach[J].International Journal of Computer Applications,2010,5(4):15-25. 被引量:1
  • 5Van den BERGH F, ENGELBRECHT A P.A new locally convergent particle swarm optimizer[C]//Proc of IEEE International Conference on Systems, Man and Cybernetics.2002:3-6. 被引量:1
  • 6SUN Jun, XU Wen-bo, FENG Bin.A global search strategy of quantum-behaved particle swarm optimization[C]//Proc of IEEE Conference on Cybernetics and Intelligent Systems.2004:111-116. 被引量:1
  • 7SONG Wei, LI Cheng-hua, PARK S C.Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures[J].Expert Systems with Applications,2009,36(5):9095-9104. 被引量:1
  • 8SALTON G, BUCKLEY C.Term-weighting approaches in automatic text retrieval[J].Information Processing & Management,1988,24(5):513-523. 被引量:1
  • 9POLI R, KENNEDY J, BLACKWELL T.Particle swarm optimization[J].Swarm Intelligence,2007,1(1):33-57. 被引量:1
  • 10CHEN Wei, SUN Jun, DING Yan-rui, et al.Clustering of gene expression data with quantum-behaved particle swarm optimization[C]//Proc of the 21st International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems:New Frontiers in Applied Artificial Intelligence.Berlin:Springer,2008:388-396. 被引量:1

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部