期刊文献+

乳腺癌针吸细胞形态定量的人工神经网络诊断模型的建立及应用研究 被引量:5

The establishment and application study based on the artificial neural network diagnostic model for differentiate diagnosis mammary carcinoma with the cell form stereological quantitative parameters by fine needle aspiration cytology
下载PDF
导出
摘要 目的建立乳腺癌针吸细胞形态定量参数的人工神经网络诊断模型,并验证其在辅助FNA诊断乳腺癌的价值。方法利用MPIAS-2000系统对60例乳腺癌及30例乳腺良性病变的针吸细胞学涂片进行形态定量测定,对获得的29项形态参数进行人工神经网络建模分析,并用盲法对其鉴别诊断能力进行评价。结果所建立的网络模型经过14次训练后即可达到误差要求,诊断模型对乳腺癌及乳腺良性病变的诊断正确率为100%,其特异性和敏感性均为100%。结论乳腺良恶性病变的针吸细胞学涂片进行ANN分析所建立的诊断模型,对乳腺癌及良性病病变的鉴别诊断具有较高的应用价值,为辅助针吸细胞学诊断乳腺良恶性病变提供了新的思路。 Objective To establish diagnostic models of cell form parameters in mammary carcinoma FNA's smears by an artificial neural network (ANN) methods, and apply the models to discriminate the mammary cancer and benign lesion. Method The cell form quantitative parameters of 60 breast cancer cases and 30 benign lesion cases were analysis by MPIAS-2000,all of cases were provided pathologically. The ANN diagnosis models of cancer and benign lesion were established combined with the 29 cell quantitative parameters. The blind-test set were used to confirm the models. Results The ANN model's meet performance goal by 14 times trainlm. ANN model of cell form quantitative parameters bad an accuracy and specialty of 100% for differentiation of breast carcinoma and benign lesion. Conclusion Method of erecting models based on cell form quantitative parameters with ANN could identify breast carcinoma and benign lesion. It may be valuable and new idea for FNA'c in the differentiation of breast diseases.
出处 《中国体视学与图像分析》 2007年第3期198-201,共4页 Chinese Journal of Stereology and Image Analysis
关键词 针吸细胞学 乳腺癌 细胞形态定量参数 人工神经网络 诊断模型 fine needle aspiration cytology mammary carcinoma cell form quantity parameter artificial neural network diagnostic model
  • 相关文献

参考文献11

二级参考文献29

共引文献17

同被引文献52

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部