期刊文献+

吸毒者脉象信号的小波与神经网络分析 被引量:3

Pulse Signal Analysis of Druggers with the Wavelet and Neural Network
下载PDF
导出
摘要 海洛因吸毒者与正常人脉象信号最显著的区别在于作为时间函数的幅度波形。两者在某特定的时间区域内的幅值及其变化速率均呈现显著的差别。然而,由小波变换所得的脉象信号尺度系数的子分量和小波系数的子分量恰好可以揭示这样的关键特征。应用小波变换的多分辨率分析法对15例海洛因吸毒者和15例正常人的脉象信号进行分析,利用db2正交小波对每一例脉象信号进行3层分解,取出第3层尺度系数的第6个分量和第3层小波系数的第2个分量的绝对值构成特征向量。设计具有良好性能的概率神经网络对获得的30个特征向量进行自动检测。在网络的设计中,取20个特征向量作为训练样本,另外10个作为测试样本。据此,15例正常人和15例吸毒者全部予以正确地检测出来,检测率达到了100%。 The most significant difference between the human pulse signals collected from heroin druggers and healthy persons is at their amplitude waveforms as time functions. That is, the amplitude values and change rates of two types of signals, within a particular time range, appear different features. However, the partial components of the scaling and wavelet coefficients of the pulse signals obtained by using wavelet transform can reveal such key features. The pulse signals of 15 heroin druggers and 15 healthy persons are analyzed through using the muhiresolution analysis of wavelet transform. By using db2 orthogonal wavelet, every pulse signal is decomposed into three levels and the absolute values of the sixth component of scaling coefficients and the second component of the wavelet coefficients in the third level are combined to form a feature vector. A probabilistic neural network with good detection performance is successfully designed for automatically detecting 30 feature vectors. During the network design, 20 feature vectors are used as training samples. The remained 10 feature vectors are used as testing samples. Based on these steps, 15 heroin druggers and 15 healthy persons are all correctly identified. In other words, the detection rate arrives at 100%. druggers.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期50-54,共5页 Journal of Chongqing University
基金 重庆市自然科学基金资助项目(CST2004BB)
关键词 小波变换 多分辨率分析 尺度系数 小波系数 概率神经网络 海洛因吸毒者 脉象信号 wavelet transform muhiresolution analysis scaling coefficient wavelet coefficient probabilistic neural network heroin druggers pulse signal
  • 相关文献

参考文献8

二级参考文献11

  • 1胡宇仁.神经网络应用技术[M].长沙:国防科学大学出版社,1993.3-8,127-136. 被引量:1
  • 2王新成.高级图象处理技术[M].北京:中国科学技术出版社,2001.55-63,103-106. 被引量:3
  • 3史忠科.神经网络控制理论[M].陕西:西北工业大学出版社,2000.24-36. 被引量:4
  • 4Pelosi L. Neurological complications of anterior spinal surgery for kyphosis with normal somatosensory evoked potentials (SEPs). J Neurol Neurosurg Psychiatry, 1999; 66(5)∶662 被引量:1
  • 5Wilson TJ, VanSickle D, Lenke LG. The benefit of neurogenic mixed evoked potentials for intraoperative spinal cord monitoring during correction of severe scoliosis: a case study. Spine, 2002;27(10)∶E258 被引量:1
  • 6Hu Y. Investigation of the reliabilty of spinal cord monitoring during scoliosis surgery, Ph.D. thesis, The University of Hong Kong, 1999∶11 被引量:1
  • 7Noss RS, Boles CD, Yingling CD. Steady-state analysis of somatosensory evoked potentials. Clin Neurophysiol, 1996; 100(5)∶453 被引量:1
  • 8Daubechies I. The wavelet transform time-frequency localization and signal analysis. IEEE Trans Inform Theory, 1990; 36(5);961 被引量:1
  • 9Hu Yong, Luk KD, Lu WW, et al. Prevention of spinal cord injury with time-frequency analysis of evoked potentials: an experimental study. J Neurol Neurosurg Psychiatry, 2001; 71(6)∶732 被引量:1
  • 10Geva AB, Pratt H, Zeevi YY. Multichannel wavelet-type decomposition of evoked potentials: model-based recognition of generator activity. Med Biol Eng Comput, 1997;35(1)∶40 被引量:1

共引文献7

同被引文献51

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部