期刊文献+

基于有限元-正则化法进行结构弹性模量识别 被引量:1

STRUCTURAL ELASTIC MODULUS IDENTIFICATION USING FINITE ELEMENT-REGULARIZATION METHOD
下载PDF
导出
摘要 在对工程结构进行各项受力分析时,准确输入弹性模量是确保分析结果可靠的前提。该文利用位移相对弹性模量容易观测的特点,首先定义了通过结构若干点实测位移识别弹模的数学模型,然后基于工程反问题求解方法梯度正则化法进行求解。并通过线性变换使求解过程中的Jacobi矩阵对角线元素归一,从而提高了求解速度和精度。编制了通用有限元计算程序,通过数值模拟算例验证了该方法的可行性,讨论了方法应用的初值选择、模型误差、附加位移选择等问题。 Elastic modulus is an important input parameter in all kinds of structural analyses. The mathematical model used to identify the structural elastic modulus with measured displacements at several points is thusly built up, and then Gradient-Regularization method, an inverse problem solution method, is employed to solve the problem. By making linear transformation, the elements along the diagonal line of Jacobi matrix can all be turned into 1 in order to enhance the computing velocity and precision. The common finite element program is compiled, and numerical examples have proved that the method is efficient. The issues such as the choice of initial value, model error and the choice of measuring points are discussed as well.
出处 《工程力学》 EI CSCD 北大核心 2007年第10期6-10,共5页 Engineering Mechanics
基金 上海市优秀青年教师后备人选自选课题资助项目(04YQHB139)
关键词 结构工程 识别 弹性模量 有限元 正则化 structural engineering identification elastic modulus finite element methods gradient-regulafization
  • 相关文献

参考文献11

二级参考文献8

  • 1Irvine H M. Cable structures[M]. Cambridge, The MIT Press, 1981.20- 60. 被引量:1
  • 2Hiroshi Zui. Practical formulas for estimation of cable tension by vibration method[J]. Journal of structural engineering, 1996, 122(6):651-657. 被引量:1
  • 3Armin B Mehrabi, W G Corley. Cable-suported bridges and structures: health&safety monitoring and problem solving[J]. J Struct Engineer, 2000, 78(9): 17- 20. 被引量:1
  • 4匿名著者,多元非线性方程组迭代解法,1983年 被引量:1
  • 5宋华,计算数学,1990年,3卷,225页 被引量:1
  • 6Chen Y M,J Comput Phy,1981年,43卷,315页 被引量:1
  • 7Chen Y M,Appl Math Comput,1976年,2卷,197页 被引量:1
  • 8魏建东,车惠民.斜拉索静力解及其应用[J].西南交通大学学报,1998,33(5):539-543. 被引量:23

共引文献49

同被引文献9

  • 1Soojin Cho, Yun Chung-Bang. Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures [J]. Smart Structures and Systems, 2007, 3(3): 373-384. 被引量:1
  • 2Bemal D. Load vectors for damage localization [J]. Journal of Engineering Mechanics, ASCE, 2002, 128(1): 7-14. 被引量:1
  • 3Gao Y. Structural health monitoring strategies for smart sensor networks [D]. Champaign, U S A: University of Illinois at Urbana-Champaign, U.S.A., 2005. 被引量:1
  • 4Spencer B F Jr, Nagayama T. Smart sensor technology: a new paradigm for structural health monitoring [C]. Proceedings of Asia-Pacific Workshop on Structural Health Monitoring, Yokohama, Japan, 2006. 被引量:1
  • 5Sim S H, Spencer B F Jr. Multi-scale smart sensing for monitoring civil infrastructure [C]. Proceedings of World Forum on Smart Materials and Smart Structures Technology, Chongqing & Nanjing, China (CD-ROM), 2008. 被引量:1
  • 6Celebi M, Sanli A. GPS in pioneering dynamic monitoring of long-period structures [J]. Earthquake Spectra, 2002, 18(1): 47-61. 被引量:1
  • 7Lee J J, Fukuda Y, Shinozuka M. Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures [J]. Smart Structures & Systems, 2007, 3(3): 373-384. 被引量:1
  • 8Sanayei M, Saletnik M J. Parameter estimation of structures from static strain measurements Ⅰ: Formulation [J]. Journal of Structural Engineering, ASCE, 1996, 122(5): 555-562. 被引量:1
  • 9Jang S A, Sim S H, Spencer B F Jr. Structural health monitoring using static strain [C]. Proceedings of World Forum on Smart Materials and Smart Structures Technology, Chongqing & Nanjing, China (CD-ROM), 2008. 被引量:1

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部