摘要
在对工程结构进行各项受力分析时,准确输入弹性模量是确保分析结果可靠的前提。该文利用位移相对弹性模量容易观测的特点,首先定义了通过结构若干点实测位移识别弹模的数学模型,然后基于工程反问题求解方法梯度正则化法进行求解。并通过线性变换使求解过程中的Jacobi矩阵对角线元素归一,从而提高了求解速度和精度。编制了通用有限元计算程序,通过数值模拟算例验证了该方法的可行性,讨论了方法应用的初值选择、模型误差、附加位移选择等问题。
Elastic modulus is an important input parameter in all kinds of structural analyses. The mathematical model used to identify the structural elastic modulus with measured displacements at several points is thusly built up, and then Gradient-Regularization method, an inverse problem solution method, is employed to solve the problem. By making linear transformation, the elements along the diagonal line of Jacobi matrix can all be turned into 1 in order to enhance the computing velocity and precision. The common finite element program is compiled, and numerical examples have proved that the method is efficient. The issues such as the choice of initial value, model error and the choice of measuring points are discussed as well.
出处
《工程力学》
EI
CSCD
北大核心
2007年第10期6-10,共5页
Engineering Mechanics
基金
上海市优秀青年教师后备人选自选课题资助项目(04YQHB139)
关键词
结构工程
识别
弹性模量
有限元
正则化
structural engineering
identification
elastic modulus
finite element methods
gradient-regulafization