摘要
采用脉冲谱技术求解抛物型方程参数控制反问题和边界元-优化法求解Poisson方程参数控制反问题;推导了算式,给出了计算程式,并分别采用这两种方法反演了非均质矩形土坝的渗透系数和某重力坝坝基帷幕区补强前后的渗透系数。计算结果表明,用脉冲谱法和边界元-优化法求解参数控制反问题是行之有效的,应用于岩土渗流计算,可基本解决坝体和地基渗透系数的反演问题,其优点是所需附加信息量少,无需大面积的钻孔取样工作,可节省大量投资。
Parabolic-type equation and Poisson equation for parameter-control inverse problems can be solved by pulse-spectrum technique (PST) and discritized-optimization method respectively. The solution procedures are formulated and numerical algorithms are given in this paper. The two algorithms have been applied respectively to invert the permeability coefficient of an inhomogeneous rectangle being strengthened by grouting. Numerical results show that PST dam and gravity dam foundations before and after and discritized-optimization method are valid for solving parameter-control inverse problems and can be applied to invert the permeability coefficient of dams and their foundations. Advantages of the two methods are that they need much less additional information and much less drilling and sampling work, so as to save much investment.
出处
《水力发电学报》
EI
CSCD
北大核心
2005年第6期72-77,共6页
Journal of Hydroelectric Engineering
基金
国家自然科学基金项目(59079405)
关键词
水力学
反问题
参数识别
脉冲谱技术
离散-优化法
hydrulics
inverse problem
parameter identification
pulse spectrum technique (PST)
discritizedoptimization method