期刊文献+

基于概率密度距离的无监督特征选择方法 被引量:1

Unsupervised feature ranking approach based on probability density interval
下载PDF
导出
摘要 在模式识别和数据分析中,经常会遇到数据特征的高维问题。为了有效地进行数据分析,特征维数的削减或特征降维就显得异常重要。针对特征选择这一问题,依据概率密度距离准则,提出一个新的无监督特征排序方法。基于交叉验证的实验结果表明,该方法与现有的方法相比更为有效。 High dimensional datasets often exist in pattern recognition and data analysis, In order to effectively analyze these datasets, reducing their dimensional members is a pivotal step. Based on probability density interval, a novel unsupervised feature ranking approach is proposed, Several cross-validation experimental results demonstrate the advantage of our approach here over others.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第19期4734-4737,共4页 Computer Engineering and Design
关键词 特征排序 特征选择 概率密度距离 Parzen窗口概率密度估计 降维 feature ranking feature selection probability density interval Parzen probability density estimation dimensionality reduction
  • 相关文献

参考文献11

  • 1宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 2张莉,孙钢,郭军.基于K-均值聚类的无监督的特征选择方法[J].计算机应用研究,2005,22(3):23-24. 被引量:29
  • 3Torkkola K.Feature extraction by non-parametric mutual informarion maximization[J].Journal of Machine Learning Research,2003(3):1415-1438. 被引量:1
  • 4Dash M,Liu H,Yao J.Dimensionality reduction of unsupervised data[C].Newport Beach:Proc 9th IEEE Int Conf Tools with Artifical Intelligence,1997:532-539. 被引量:1
  • 5张海龙,王莲芝.自动文本分类特征选择方法研究[J].计算机工程与设计,2006,27(20):3840-3841. 被引量:45
  • 6Wang Hui,Bell D,Murtagh F.Axiomatic approach to feature subset selection based on relevance[J].IEEE Transactions on Pattern Analysis Machine Intelligence,1999,21 (3):271-277. 被引量:1
  • 7Morita M,Sabourin R.Unsupervised feature selection using multi objective genetic algorithms for handwritten word recognition[C].Edinburgh,Scotland:International Conference on Document Analysis and Recognition,2003:666-671. 被引量:1
  • 8边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 9Jacek Biesiada,Wlodzislaw Duch.Feature ranking methods based on information entropy with Parzen windows[C].Katowice,Poland:International Conference on Research in Electrotechnology and Applied Informatics,2005. 被引量:1
  • 10Newman D J,Hettich S,Blake,et al.UCI repository of machine learning databases[EB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html. 被引量:1

二级参考文献52

共引文献113

同被引文献7

  • 1宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 2王晓明,王士同.基于概率密度逼近的无监督特征排序[J].计算机应用研究,2007,24(4):47-51. 被引量:2
  • 3Jacek Biesiada, Wlodzislaw Duch. Feature ranking methods based on information entropy with Parzen windows[C]. Katowice, Poland: International Conference on Research in Electrotechnology and Applied Informatics, 2005. 被引量:1
  • 4Torkkola K.Feature extraction by non-parametric mutual information maximization[J]. Journal of Machine Learning Research, 2003,3:1415-1438. 被引量:1
  • 5Newman D J,Hettich S,Blake,et al. UCI Repository of machine learning databases[EB/OL], http://www.ics.uci.edu/-mlearn/ MLRepository.html. 被引量:1
  • 6HSU Chih-wei,CHANG Chih-chung,LIN Chih-jen.A practical guide to support vector classification[EB/OL], http://www. csie. ntu.edu.tw/-cjlin/papers/guide/guide.pdf,2003-08-10/2004- 11-10. 被引量:1
  • 7Dash M,Liu H,Yao J.Dimensionality reduction of unsupervised data[C]. Newport Beach: Proc of 9th IEEE Int Conf Tools with Artifical Intelligence, 1997:532-539. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部