期刊文献+

一种高效的分形属性选择算法 被引量:4

Performance Optimization of Fractal Dimensionality Reduction Algorithm
下载PDF
导出
摘要 FDR(Fractal Dimensionality Reduction)算法的主要问题在于需要多次扫描数据集,I/O开销比较大,Opt-FDR(Optimized FDR)通过对FD-tree进行动态调整来避免多次扫描数据集,但对算法的空间需求比较高.借鉴Z-ordering索引技术的思想,设计并实现了一种改进的分形属性选择方法ZB-FDR(Z-ordering Based FDR).该方法仅需要扫描数据集一遍建立底层网格结构,基于该底层网格结构实现分形维数的计算及后向删除维操作.在合成数据集及实际数据集上的实验结果表明ZBFDR具有较为优良的整体性能. FDR (Fractal Dimensionality Reduction) is the most famous fractal dimension based feature selection algorithm proposed by Traina in 2000. However,it is inefficient in the high dimensional data space for multiple scanning the data set. The optimized algorithm proposed in 2004, Opt-FDR, which scans the data set only once and adjusts the FD-tree dynamically for evaluating the fractal dimension. But the adjusting process is complicated and the space complexity is high. Taking advantage of the Z-ordering technique, we propose an optimized FDR, ZB-FDR(Z-ordering Based FDR),which scans the data set only once to initialize the lowest cell queue and performs the backward feature reduction. The experimental results show that ZB-FDR algorithm achieves better performance.
作者 闫光辉
出处 《兰州交通大学学报》 CAS 2007年第1期6-10,25,共6页 Journal of Lanzhou Jiaotong University
基金 光电技术与智能控制教育部重点实验室(兰州交通大学)开放基金资助项目(K04116) 甘肃省教育厅科研项目资助(0604-09)
关键词 维数削减 特征选择 特征抽取 分形维 Z—ordering dimensionality reduction feature selection feature extraction fractal dimension Z-ordering
  • 相关文献

参考文献12

  • 1Bellman R.Adaptive control process:a guide tour[M].New Jersey:Princeton University Press,1961. 被引量:1
  • 2Aha D W,Bankert R L.A comparative evaluation of sequential feature selection algorithms[A].Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics[C],Ft.Lauderdale,FL,1995,1-7. 被引量:1
  • 3Scherf M,Brauer W.Feature selection by means of a feature weighting approach[R].Technische University München,1997. 被引量:1
  • 4Vafaie H.,Jong K A D.Robust feature selection algorithms[A].Fifth International Conference on Tools with Artificial Intelligence[C].IEEE Computer Society Press,1993,356-363. 被引量:1
  • 5Blum A.L.,Langley P.Selection of relevant features and examples in machine learning[J].Artificial Intelligence,1997,97:245-271. 被引量:1
  • 6Camastra Francesco.Data dimensionality estimation methods:a survey[J].Pattern Recognition,2003,36(12):2 945-2 954. 被引量:1
  • 7宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 8Traina C Jr,Traina A,Wu L,et al.Fast feature selection using fractal dimension[A].XV Brazilian Database Symposium[C].2002,158-171. 被引量:1
  • 9Parros Machado de Sousa E,Traina C,Traina A,et al.How to use fractal dimension to find correlations between attributes[A].Proc.KDD-Workshop on Fractals and Self-similarity in Data Mining:Issues and Approaches[C].New York:ACM Press,2002. 被引量:1
  • 10Bao Yubin,Yu Ge,Sun Huanliang,et al.Performance optimization of fractal dimension based feature selection algorithm[A].WAIM 2004,LNCS 3129[C].2004,739-744. 被引量:1

二级参考文献36

  • 1宣国荣,柴佩琪.基于Chernoff上界的特征选择[J].模式识别与人工智能,1996,9(1):26-30. 被引量:2
  • 2刘伟权,王明会,钟义信.利用遗传算法实现手写体数字识别中特征维数的压缩[J].模式识别与人工智能,1996,9(1):45-51. 被引量:4
  • 3宣国荣,柴佩琪.基于巴氏距离的特征选择[J].模式识别与人工智能,1996,9(4):324-329. 被引量:16
  • 4Wiener E., Pedersen J.O., Weigend A.S.. A neural network approach to topic spotting. In: Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval, 1995, 317~332 被引量:1
  • 5Haykin Smon. Neural Networks: A Comprehensive Foundation. Second Edition. Beijing: Tsinghua University Press, 2001 被引量:1
  • 6Scholkopf B., Smola A., Mulle K.R.. Nonlinear component analysis as a kernel eigenvalue problem. Max-Planck-Institute, Germany: Technical Report No. 44, 1996 被引量:1
  • 7Yang Jian, Frangi Alejandro F., Yang Jing-Yu, Zhang David, Jin Zhong. KPCA plus lda: A complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230~244 被引量:1
  • 8Yang Yi-Ming. An evaluation of statistical approaches to text categorization. Information Retrieval, 1999, 1(1~2): 69~90 被引量:1
  • 9Sebastiani F.. Machine learning in automated text categorization. ACM Computing Surveys, 2002, 34(1): 1~47 被引量:1
  • 10Lewis D.. Reuters Collection. http://www.research.att.com/~lewis/reuters21578.html 被引量:1

共引文献43

同被引文献71

引证文献4

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部