期刊文献+

统计套利模型研究——基于上证50指数成份股的检验 被引量:21

A Model Study of Statistical Arbitrage——A Test Based on Constituent Shares of Index Shangzheng 50
下载PDF
导出
摘要 本文借鉴协整的思想,并采用比协整回归更一般化的方法来研究股票之间的统计套利模型。采用逐步回归法来确定合适的定价子空间与证券组合,并将统计套利模型应用于上证50指数的50个成份股,并使用方差比分析来检验可预测性,其结果表明随机去势后的股票价格序列明显偏离随机游走,存在着可预测成分。联立方程模型的估计结果表明错误定价趋于在短期内形成趋势,而在更长时间内回复。样本外绩效对交易费用水平的变动非常灵敏,机构投资者的年夏普比为1.3。 We adopt the idea of Cointegration and apply the methods that are more generalized than cointegration regression to study the Statistical Arbitrage Models of the securities. We use the method of stepwise regression to identify the appropriate subspace for pricing and the stock portfolios from the Constituent Shares of Index Shangzheng 500 The results of Variance Ratio analysis which tests the predictability show that the detrended stock prices deviate significantly from random walk and contain predictable components. The estimation results of the model of simultaneous e- quations indicate that the mispricing of the stocks tends to trend in the short - term and revert in the longer term. The out - of- sample performance of the Statistical Arbitrage model is sensitive to the movement of cost very much. The institutional investors' annualized Sharpe Ratio is 1.3.
出处 《数理统计与管理》 CSSCI 北大核心 2007年第5期908-916,共9页 Journal of Applied Statistics and Management
基金 04年教育部重大项目(05JJD790005) 05年国家社会科学基金项目(05BJY100) 05年国家自然科学基金项目(70573040) "吉林大学‘985工程’项目"资助
关键词 统计套利模型 错误定价 方差比分析 均值回复 Statistical arbitrage models mispricing variance ratio analysis mean- reversion
  • 相关文献

参考文献12

  • 1Lo, A. , and A. C. MacKinlay. Maximizing Predictability in the Stock and Bond Markets. Working Paper, MIT Laboratory for Financial Engineering, 1996, LFE - 1019 -96. 被引量:1
  • 2Burgess, A. N. , and Refenes, A. - P. N. Modeling non - linear cointegration in international equity index futures. Neural Networks in Financial Engineering (eds. A. - R N. Refenes et al. ). Singapore, World Scientific, 1996, 50-63. 被引量:1
  • 3Hann, T. H. and E. Steurer. Much Ado about Nothing? Exchange Rate Forecasting: Neural Networks vs. Linear Models Using Weekly and Monthly Data[ J]. Neurocomputing, 1996, 10: 323-339. 被引量:1
  • 4Burgess, A.N. Statistical yield curve arbitrage in eurodollar futures using neural networks. Neural Networks in Financial Engineering (eds. A. -P. Refenes et al. ), Singapore, World Scientific, 1996, 98-110. 被引量:1
  • 5Burgess, A. N. Statistical Arbitrage Models of the FTSE 100. Computational Finance 1999 (6th International Conference Computational Finance 1999), MIT Press, 1999. 被引量:1
  • 6Oleg Bondarenko. Statistical Arbitrage and Securities Prices [ J]. The Review of Financial Studies, 2003, Vol. 16, No. 3:875-919. 被引量:1
  • 7Antonio E. Bernardo, Olivier Ledoit. Gain, Loss and Asset Pricing[ J]. The Journal of Political Economy, 2000, Vol. 108, No. 1: 144-172. 被引量:1
  • 8Steve Hogan, Robert Jarrow, Melvyn Teo, Mitch Warachka. Testing market efficiency using statistical arbitrage with applications to momentum and value strategies[ J]. Journal of Financial Economics, 2004 ,Vol. 73, Issue. 3 : 525-565. 被引量:1
  • 9Lo, A. , and A. C. MacKinlay. Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test[ J]. Review of Financial Studies, 1988, 1:41-66. 被引量:1
  • 10Cochrane, J. How Big Is the Random Walk in GNP? [J]. Journal of Political Economy, 1988, 96: 892- 920. 被引量:1

同被引文献487

引证文献21

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部