期刊文献+

基于处方监测的流感样疾病预警模型研究 被引量:6

Time Series Modeling for Flu-like Diseases Surveillance by Monitoring the Prescriptions
下载PDF
导出
摘要 [目的]通过对医院门诊逐日处方量的监测,建立流感样疾病就诊量的监测模型,从而,间接地监测该病在区域内流行情况,并做出早期预警,以采取快速反应,减少疾病所造成的危害。[方法]搜集了2002年8月1日至2005年12月8日北京某综合医院门急诊就诊人次、门急诊流感样疾病患者人次和治疗流感样疾病的处方量,计算日均该类药物处方量,建立序列图,对该序列进行对数和差分变换后,建立时间序列监测模型。[结果]该院日人均治疗流感样疾病的药物处方量为(0.22±0.21)单位,此序列存在一定的自相关性,但不存在季节效应,最佳拟合模型为Yt=0.14Yt-1+et-0.16et-1。模型的敏感性为0.87,外推预测的平均相对误差为0.307。[结论]对特定治疗药物处方监测是流感样疾病监测的重要手段之一。所建立的时间序列模型可为流感样疾病的暴发做出早期预警。基于症状监测的监测网络的建立将提高传染病早期预警的准确性和灵敏性。 [Objective]To develop the modeling for monitoring the outbreak of flu-like diseases using the prescriptions data for treating the flu-like diseases.[Methods]Time series analysis was conducted through developing an ARIMA(1,1, 1) model using data of prescriptions for treating the flu-like diseases in an general hospital in Beijing from August 1st, 2002 to August 1 st,2005,and the model was tested by the data from August 2nd, 2005 to December 8th, 2005, [Results] The mean of the prescriptions per day was (0.22±0.21) in the hospital. The pattern of it presented an autocorrelation and did not present the season pattern. The model was the best one for surveillance for flu-like diseases based on the prescriptions in the hospital. The sensitivity of the model was 0.87 and the relative error of model for forecasting was percentage of 30.7. [Conclusion]The surveillance of the prescriptions was one of important tool for monitoring the infectious diseases. The time series model can be used to detect the abnormal pattern of flu-like diseases. The veracity and sensitivity of the models for early warning can be improved by constructing surveillance network based on syndrome among all hospitals in a city,as well as all country.
出处 《预防医学论坛》 2007年第10期875-877,共3页 Preventive Medicine Tribune
关键词 处方监测 流感样疾病 预警模型 时间序列分析 Surveillance of the prescriptions Modeling for early warning Flu-like diseases Time series analysis
  • 相关文献

参考文献12

二级参考文献44

  • 1叶国文.预警和救治:从“9·11”事件看政府危机管理[J].国际论坛,2002,4(3):22-27. 被引量:61
  • 2顾兆农.人民观察:解读五大城市非典舆情调查[EB].http://WWW.people.com.on/GB/shehui/47/20030603/1006817.html,. 被引量:1
  • 3国家发展改革委.国家增加专项投资,加快防治“非典”公共卫生设施建设[EB].http://www.sdpe.gov.cn,. 被引量:1
  • 4RJ斯蒂尔曼.公共行政学[M].北京:中国社会科学出版社,1989.184. 被引量:1
  • 5彭文伟.传染病的特征[A].见:彭文伟主编.传染病学第4版[C].北京:人民卫生出版社,1980.7-9. 被引量:1
  • 6Wagner MM, Tsui FC, Espino JU, et al. The emerging science of very early detection of disease outbreaks. J Public Health Manag Pract, 2001, 7:51-59. 被引量:1
  • 7Lewis MD, Pavlin JA, Mansfield JL, et al. Disease outbreak detection system using syndmmic data in the greater Washington DC area. Am J Prev Med, 2002,23:180-186. 被引量:1
  • 8Sosin DM. Draft framework for evaluating syndromic surveillance systems. J Urban Health,2003,80 2 Suppl 1: i8-13. 被引量:1
  • 9Lazarus R, Kleinman K, Dashevsky I, et al. Use of automated ambulatory-care encounter records for detection of acute illness clusters, including potential bioterrorism events. Emerg Infect Dis,2002,8:753-760. 被引量:1
  • 10Osaka K, Takahashi H, Ohyama T. Testing a symptom-based surveillance in high profile gatherings as a preparatory measure for bioterrorism. Epidemiol Infect,2002,129:429-434. 被引量:1

共引文献109

同被引文献87

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部