期刊文献+

关于几乎周期点的讨论 被引量:3

Research on Almost Periodic Point
下载PDF
导出
摘要 研究了几乎周期点集的一些性质,给出了几乎周期点的等价命题进而证明了限制在其ω-极限集上的子系统是自同胚的。 This paper makes a study of the property of almost periodic point sets.It gives equivalent propositions of almost periodic point and proves that the subsystem restricted within ω-limit point sets is self-homeomorphism.
出处 《河南科技大学学报(自然科学版)》 CAS 2007年第5期76-78,共3页 Journal of Henan University of Science And Technology:Natural Science
基金 重庆市教委科学研究项目(05JWSK054)
关键词 几乎周期点 周期点 回归点 ω-极限点 Almost periodic point Periodic point Recurrent set ω-limit point
  • 相关文献

参考文献9

二级参考文献15

  • 1金渝光.一类二维自映射无异状点的又一充要条件[J].重庆师范学院学报(自然科学版),1994,11(1):12-15. 被引量:7
  • 2[1]Liao Gongfu. Limit Sets and Chaos for Maps of the Interval[J]. Northeastern Math. J,1990,6:127~135. 被引量:1
  • 3[2]Block LS, COPPI WA. Dynamics of One Dimension, Lect Notes in Math Vol[M]. Berlin: Springer-verlag,1992.69~166. 被引量:1
  • 4[3]Liao Gongfu. A Note on a Chaotic Map with Topological Entropy[J]. Northeastern Math, J,1986,2(4):379~382. 被引量:1
  • 5[4]Liao Gongfu. Chain Recurrent Orbits of Mapping of the Interval[J]. Northeastern, Math. J,1986,2:240~244. 被引量:1
  • 6[5]Misiurwicz M. Invariant Measures for Continuous Transformations of [0,1] with Zero Topological Entropy, Lect Notes in Math, Vol[M]. Berlin: Springer-verlag,1979.144~152. 被引量:1
  • 7Block, L. S. & Coppel, W. A., Dynamics in one dimension [M], Lecture Notes in Math.,1513, Springer-Verlag, New York, Berlin Heidelberg, 1992. 被引量:1
  • 8Liao Gongfu & Fan Qinjie, Minimal subshifts which display Schweizer-Smital chaos and have zero topological entropy[J],Science in China,Series A,41(1998),33-38;中文版:A辑,27(1997),769-774. 被引量:1
  • 9Walters, P., An introduction to ergodic theory [M], Springer-Verlag, New York, Berlin Heidelberg, 1982. 被引量:1
  • 10Schweizer, B. & Smital, J., Measures of chaos and a spetral decomposition of dynamical systems on the interval [J], Trans. Amer. Math. Soc., 344(1994), 737-754. 被引量:1

共引文献57

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部