期刊文献+

基于蚁群算法的最优路径选择问题的研究 被引量:18

Research for optimal routing problem based on ant colony algorithm
下载PDF
导出
摘要 交通网络中最优路径的选择尤为重要,各国学者在这方面做了大量的研究和改进。提出了一种基于蚁群算法的最优路径选择问题的新方法。在最优路径的选择过程中采用蚁群算法并对其进行建模,能够发挥算法并行性、正反馈、协作性等特点,使各蚂蚁个体之间相互协作,在较短的时间内发现较优解。研究及模拟实验结果表明,蚁群算法是一种鲁棒性较强的新型模拟仿生算法,具有较好的发展前景。 It's necessary to choose the optimal route in traffic network. Various foreign researchers have done a lot of research and im- provement. A new method about choosing the optimal routing problem based on ant colony algorithm is presented. In the process of choosing the best path, ACA is used and built a mathematic model for this. In this model, the ACA's characters such as parallelism, positive feedback and collaboration are exerted, with which the unit could collaborate each other and could find the better solution in shorter time. The study and simulation results indicate that ACA is a new simulated bionic algorithm with robust, and it has a better progress foreground.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第16期3957-3959,4058,共4页 Computer Engineering and Design
基金 北京市教委基金项目(KM200410028013)
关键词 蚁群算法 交通网络 最优路径 信息素 模拟进化算法 ant colony algorithm (ACA) transport network optimal routing pheromone simulated evolutionary algorithm
  • 相关文献

参考文献9

  • 1唐文武,施晓东,朱大奎.GIS中使用改进的Dijkstra算法实现最短路径的计算[J].中国图象图形学报(A辑),2000,5(12):1019-1023. 被引量:65
  • 2Jagadesh G R,Shrinkthan T,Quek K H.Heuristic techniques for accelerating hierarchical routing on road networks[J].IEEE Transactions on Intelligent Transportation System,2003,3 (4):301-309. 被引量:1
  • 3关桂霞,赵剡,刘莹青.一种基于模糊理论的最佳路径选择方法[J].华北工学院学报,2001,22(1):75-78. 被引量:21
  • 4Wen Huimin,Yang Zhaosheng.Study on the shortest path algorithm based on fluid neural network of in vehicle traffic flow guidance system[C].Proceeding of the IEEE International Conference on Vehicle Electronics.Changchun:IEEE,1999:110-113. 被引量:1
  • 5Chang W A,Ramakrishna R S.A genetic algorithm for shortest path routing problem and the sizing of populations[J].IEEE Transactions on Evolutionary Computation,2002,6 (6):566-579. 被引量:1
  • 6萧蕴诗,李炳宇,吴启迪.求解TSP问题的模式学习并行蚁群算法[J].控制与决策,2004,19(8):885-888. 被引量:20
  • 7Zhou P,Li X P,Zhang H F.An ant colony algorithm for job shop scheduling problem[C].Proceedings of the 5th World Congress on Intelligent Control and Automation,2004:2889-2903. 被引量:1
  • 8Joseph J,John W P.Allometric scaling of ant foraging trail networks[J].Evolutionary Ecology Research,2003,5:297-303. 被引量:1
  • 9段海滨著..蚁群算法原理及其应用[M].北京:科学出版社,2005:447.

二级参考文献12

  • 1高晖.GIS与GPS的TIS中的应用研究[M].北京:北京航空航天大学,1998.71-88. 被引量:1
  • 2Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics - Part B,1996,26(1):29-41. 被引量:1
  • 3Dorigo M, Gambardella L. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation,1997,1(1):53-66. 被引量:1
  • 4Bullnheimer B, Kotsis G, Strauss C. Parallelization strategies for the ant system[R]. Vienna: University of Vienna,1997. 被引量:1
  • 5Thomas Stützle, Holger Hoos. MAX-MIN ant system and local search for the traveling salesman problem[A]. Proc IEEE Int Conf on Evolutionary Computation (ICEC′97)[C]. Indianapolis,1997.309-314. 被引量:1
  • 6康立山 谢云 尤失勇.非数值并行算法(一)[M].北京:科学出版社,1998.. 被引量:1
  • 7Michael Kuby et al. A minimax method for finding the k best differentiated paths, Geographical Analysis, 1997,29(4):298-313. 被引量:1
  • 8Miller Harbey J, Measuring spacing-time accessibility benefits within transportation networks: Basic theory and computational procedures. Geographical Analysis,1999,31(1):1-26. 被引量:1
  • 9Stefanakes E,Kavouras M.On the determination of the optimum path in space, In Spatial Information theory, A theoretical basis for GIS, In: Proceedings of International Conference COSIT'95. Berlin:Springer,1995:241-257. 被引量:1
  • 10宫鹏.城市地理信息系统:方法与应用,伯克利:中国海外地理信息系统协会.1996. 被引量:1

共引文献102

同被引文献108

引证文献18

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部