期刊文献+

基于神经网络的车辆稳定性悬架阻尼控制仿真 被引量:1

Simulation of Suspension Damping Control Algorithm Based on Neural Network for Vehicle Stability Control
下载PDF
导出
摘要 应用神经网络设计了车辆稳定性控制的悬架阻尼控制参数自整定算法。论述了基于神经网络的悬架阻尼控制算法的设计过程,搭建了软件在环仿真平台,针对典型工况进行了仿真研究与分析。结果表明:控制算法通过控制悬架阻尼,能有效抑制车轮载荷变化,实现控制整车横摆的目的,显著改善了车辆操纵稳定性。 Neural network was used to design suspension damping PID controllers whose parameters were optimized on line. The process of design of suspension damping control algorithm based on neural network was described, and a software-in-the-loop simulator was erected and simulations of typical conditions were made for research and analysis, The results show that the control algorithm can eliminate the variations of wheel load in order to control vehicle yaw rate by adjusting suspension damping. Handling and stability performance are improved evidently.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第16期3813-3815,3837,共4页 Journal of System Simulation
基金 长春市振兴老工业基地科技攻关及市 院合作计划资助项目(2004175)
关键词 车辆工程 悬架阻尼 神经网络 仿真 操纵稳定性 vehicle engineering suspension damping neural network simulation handling and stability
  • 相关文献

参考文献10

二级参考文献39

  • 1陈传硕,田丽华.PID控制参数的整定方法[J].长春邮电学院学报,1994,12(1):9-16. 被引量:26
  • 2胡晚霞,余玲玲,戴义保,何亨文.PID控制器参数快速整定的新方法[J].工业仪表与自动化装置,1996(5):11-16. 被引量:25
  • 3Astrom K J,Hagglund T. The future of PID control[J]. Control Engineering Practice, 2001,9 (11) : 1163-1175. 被引量:1
  • 4Wang P, Kwok D P. Auto-tuning of classical PID controllers using an advanced genetic algorithm [A].Proc IEEE Int Conf on Power Electronics and Motion Control[C]. San Diego, 1992.1224-1229. 被引量:1
  • 5Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth, 1995:1942-1948. 被引量:1
  • 6Eberhart R,Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C]. Nagoya, 1995.. 39-43. 被引量:1
  • 7Shi Yuhui, Eberhart R. Modified particle swarm optimizer[A]. Proc 1EEE Int Conf on Evolutionary Computation[C]. Anchorage, 1998:69-73. 被引量:1
  • 8Ziegler J G, Nichols N B. Optimum settings for automatic controllers[J]. Trans ASME, 1942,64(11):433-444. 被引量:1
  • 9Narendra K S, Parthasarathy K. Identification and Control of Dynamic Systems Using Neural Networks [J]. IEEE Trans. neural networks, 1990, 1(1): 4-27. 被引量:1
  • 10Narendra K S. Neural Networks for Control: Theory and Practice [A]. Proc. of The IEEE [C]. 1996, 84(10): 1385-1406. 被引量:1

共引文献244

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部